I.F.S. EXAM-(M) 2018

FSI-P.STSC

STATISTICS
 Paper - I

Time Allowed : Three Hours
Maximum Marks : 200

Question Paper Specific Instructions

Please read each of the following instructions carefully before attempting questions:

There are EIGHT questions in all, out of which FIVE are to be attempted.
Questions no. 1 and 5 are compulsory. Out of the remaining SIX questions, THREE are to be attempted selecting at least ONE question from each of the two Sections A and B.

Attempts of questions shall be counted in sequential order. Unless struck off, attempt of a question shall be counted even if attempted partly. Any page or portion of the page left blank in the Question-cum-Answer Booklet must be clearly struck off.

All questions carry equal marks. The number of marks carried by a question/part is indicated against it.

Answers must be written in ENGLISH only.
Unless otherwise mentioned, symbols and notations have their usual standard meanings.
Assume suitable data, if necessary and indicate the same clearly.

SECTION A

Q1. (a) (i) For n events $A_{1}, A_{2}, \ldots, A_{n}$, show that

$$
P\left(\bigcap_{i=1}^{n} A_{i}\right) \geq \sum_{i=1}^{n} P\left(A_{i}\right)-(n-1)
$$

(ii) Let $\left\{\mathrm{A}_{\mathrm{n}}\right\}$ be an increasing sequence of sets (events), then show that

$$
\lim _{n \rightarrow \infty} P\left(A_{n}\right)=P\left(\lim _{n \rightarrow \infty} A_{n}\right)=P\left(\bigcup_{n=1}^{\infty} A_{n}\right)
$$

(b) Let $\Omega=\{1,2,3,4\}$ and $\mathrm{p}_{\mathrm{i}}=\mathrm{P}\{\mathrm{i}\}, \mathrm{i}=1,2,3,4$.

Assume that

$$
\begin{aligned}
& \mathrm{p}_{1}=\frac{\sqrt{2}}{2}-\frac{1}{4} \\
& \mathrm{p}_{2}=\frac{1}{4} \\
& \mathrm{p}_{3}=\frac{3}{4}-\frac{\sqrt{2}}{2}, \text { and } \\
& \mathrm{p}_{4}=\frac{1}{4}
\end{aligned}
$$

Define the events

$$
\mathrm{E}_{1}=\{1,3\}, \mathrm{E}_{2}=\{2,3\} \text { and } \mathrm{E}_{3}=\{3,4\}
$$

Check whether $\mathrm{E}_{1}, \mathrm{E}_{2}$ and E_{3} are mutually independent.
(c) Suppose that X_{1}, \ldots, X_{n} form a random sample from a Uniform distribution on the interval $\left[\theta_{1}, \theta_{2}\right]$ where both θ_{1} and θ_{2} are unknown $\left(-\infty<\theta_{1}<\theta_{2}<\infty\right)$. Find the maximum likelihood estimators of θ_{1} and θ_{2}.
(d) Suppose that X_{1}, \ldots, X_{n} form a random sample from a Gamma distribution for which the value of parameter α is unknown ($\alpha>0$) and value of parameter β is known. Show that the joint probability density function of $\mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{n}}$ has a Monotone Likelihood Ratio (MLR).
(e) (i) Let $\left\{\mathrm{X}_{\mathrm{n}}\right\}$ be a sequence of events such that

$$
\begin{aligned}
& P\left[X_{n}=n^{2}-1\right]=\frac{1}{n^{2}}, \\
& P\left[X_{n}=-1\right]=1-\frac{1}{n^{2}} .
\end{aligned}
$$

Check whether Strong Law of Large Numbers holds. Also comment about Weak Law of Large Numbers.
(ii) Let
$\mathrm{X}_{\mathrm{n}} \xrightarrow{\text { prob. }} \mathrm{X}$ and $\mathrm{Y}_{\mathrm{n}} \xrightarrow{\text { prob. }} \mathrm{Y}$, then show that

$$
\begin{equation*}
\mathrm{X}_{\mathrm{n}} \mathrm{Y}_{\mathrm{n}} \longrightarrow \mathrm{XY} \text { in probability. } \tag{8}
\end{equation*}
$$

Q2. (a) Suppose that a diagnostic test for $\operatorname{HIV}(+)$ status has both sensitivity ($\mathrm{P}($ Test positive \mid Disease)) and specificity ($\mathrm{P}($ Test negative \mid No disease $)$) equal to 0.95 and the real possibility ($\mathrm{P}($ Disease)) is 0.005 . Find the probability that a subject is truely $\operatorname{HIV}(+)$ given that the diagnostic test is positive.
(b) Let a continuous random variable X have probability density function (pdf) given by

$$
\mathrm{f}(\mathrm{x})\left\{\begin{array}{cc}
\frac{2 \mathrm{x}}{\pi^{2}}, & 0<\mathrm{x}<\pi \\
0, & \text { otherwise }
\end{array}\right.
$$

Find the probability density function of $\mathrm{Y}=\sin \mathrm{X}$.
(c) Let (X, Y) be uniformly distributed over

$$
R=\left\{(x, y) \mid x^{2}+y^{2} \leq 1, y \geq 0\right\}
$$

Find
(i) the distributions of $(\mathrm{X} \mid \mathrm{Y}=\mathrm{y})$ and $(\mathrm{Y} \mid \mathrm{X}=\mathrm{x})$,
(ii) $\quad \mathrm{E}(\mathrm{Y} \mid \mathrm{X}=\mathrm{x})$ and $\mathrm{E}(\mathrm{X} \mid \mathrm{Y}=\mathrm{y})$, and
(iii) Correlation coefficient ρ_{XY}.
(d) Let X follow Pareto distribution with parameters α and θ with probability density function (pdf)

$$
f(x)=\frac{\alpha \theta^{\alpha}}{(x+\theta)^{\alpha+1}}, x>0
$$

then show that

$$
\mathrm{Y}=\ln \left(\frac{\mathrm{X}}{\theta}\right)
$$

follows Logistic distribution.

Q3. (a) Suppose that $\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}$ form a random sample from a Beta distribution with parameters α and β where the value of α is known and the value of β is unknown $(\beta>0)$. Obtain a sufficient statistic for β.
(b) Let $\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}$ be a random sample from $\mathrm{P}(\theta)$. Find Uniformly Minimum Variance Unbiased Estimator (UMVUE) of $\mathrm{e}^{-\theta}$. Compute the estimator based on the following sample observations :

$$
1,3,0,8,5,6,9,2,7,5
$$

(c) The lifetimes of fluorescent lamps are independent exponential random variables with parameter β. Suppose that β has a prior distribution Gamma with parameters 4 and 20,000. After we observe 5 lamps with lifetimes 2911, 3403, 3237, 3509 and 3118 (in hours), we want to predict the lifetime X_{6} of the next lamp. Obtain the predictive distribution of X_{6}. 10
(d) Suppose $\mathrm{X}_{1}, \mathrm{X}_{2}, \ldots, \mathrm{X}_{\mathrm{n}} \sim \mathrm{N}\left(\mu, \sigma^{2}\right)$ where σ^{2} is known.
(i) Find the Likelihood Ratio Test (LRT) for $\mathrm{H}_{0}: \mu \leq \mu_{0}$ vs $\mathrm{H}_{1}: \mu>\mu_{0}$.
(ii) Show that the test in (i) is a UMP test.

Q4. (a) For any sequence $\left\{\mathrm{A}_{\mathrm{n}}, \mathrm{n} \geq 1\right\}$ of events with $\sum_{\mathrm{k}=1}^{\infty} \mathrm{P}\left(\mathrm{A}_{\mathrm{k}}\right)<\infty$, comment on the following with justification :
(i) $P\left(\bigcup_{k=n}^{\infty} A_{k}\right) \leq \sum_{k=n}^{\infty} P\left(A_{k}\right)$
(ii) $\mathrm{P}\left(\lim _{\mathrm{n}} \sup \mathrm{A}_{\mathrm{n}}\right)=0$
(b) Suppose that an examination contains 99 questions arranged in a sequence from the easiest to the most difficult. Suppose that the probability that a particular student will answer the first question correctly is 0.99 , the probability that he will answer the second question correctly is 0.98 and in general, the probability that he will answer the $i^{\text {th }}$ question correctly is $1-\frac{\mathrm{i}}{100}$, for $\mathrm{i}=1,2, \ldots, 99$. It is assumed that all questions will be answered independently and that the student must answer at least 60 questions correctly to pass the examination. What is the probability that the student will pass ?
(Tables 1(a) and 1(b) are provided at the end.)
(c) Let $\left\{\mathrm{X}_{0}, \mathrm{X}_{1}, \ldots\right\}$ be a Markov Chain (MC) with transition probability matrix

Let $g(x)= \begin{cases}0, & x=1 \\ 1, & x=2,3 .\end{cases}$
If $\mathrm{Y}_{\mathrm{n}}=\mathrm{g}\left(\mathrm{X}_{\mathrm{n}}\right), \mathrm{n} \geq 0$, show that $\left\{\mathrm{Y}_{0}, \mathrm{Y}_{1}, \ldots\right\}$ is not a Markov Chain (MC).
(d) Derive Kolmogorov - Smirnov test for two samples and illustrate.

SECTION B

Q5. (a) Let N be the incidence matrix of a Balanced Incomplete Block Design (BIBD) of order $b \times v$. Show that $b \geq v$.
(b) (i) A plane is fitted to $\mathrm{n}=33$ observations on $\left(\mathrm{X}_{1}, \mathrm{X}_{2}, \mathrm{Y}\right)$ and it is found that overall regression is just significant at $\alpha=0.05$ level. Find out R^{2} based on the available information.
(Tables 2(a) and 2(b) are provided at the end.)
(ii) In a one-way layout, show that for all values of $\mathrm{i}, \mathrm{i}^{\prime}$ and j ,

$$
\begin{aligned}
& \mathrm{j}=1,2, \ldots, \mathrm{n}, \\
& \mathrm{i}, \mathrm{i}^{\prime}=1,2, \ldots, \mathrm{p}, \\
& \mathrm{w}_{1}=\mathrm{y}_{\mathrm{ij}}-\overline{\mathrm{y}}_{\mathrm{i} \cdot}, \\
& \mathrm{w}_{2}=\overline{\mathrm{y}}_{\mathrm{i}^{\prime} \cdot}-\overline{\mathrm{y}}_{\mathrm{i} \cdot .}, \\
& \mathrm{w}_{3}=\overline{\mathrm{y}}_{\mathrm{i} \cdot} .
\end{aligned}
$$

are uncorrelated with each other (under usual assumptions). $3+5$
(c) Let \mathbf{Y} follow $\mathbf{N}_{2}\left(\mu_{1}, \mu_{2}, \sigma_{1}^{2}, \sigma_{2}^{2}, \rho\right)$. Find distribution of $\mathbf{Z}=\mathrm{C} \mathbf{Y}$ where C is a 2×2 non-singular matrix. Also give an explicit form of matrix C such that $\mathrm{C} \Sigma \mathrm{C}^{\prime}=\mathrm{I}$, where Σ is the dispersion matrix of \mathbf{Y}.
(d) Construct a 2^{3} design in two blocks where ABC is confounded.
(e) Find the condition under which systematic sample mean is more efficient than a simple random sample mean.

Q6. (a) Let $\mathrm{X}_{1}, \mathrm{X}_{2}, \ldots, \mathrm{X}_{\mathrm{n}}$ be a random sample from $\mathbf{N}_{\mathrm{p}}(\mu, \Sigma)$. Consider the hypothesis $\mathrm{H}_{0}: \mu=\mathrm{k} \mu_{0}$, where Σ and μ_{0} are known. Derive the MLE for k. Show that $-2 \log$ likelihood ratio is

$$
\mathrm{n} \overline{\mathrm{X}} \Sigma^{-1}\left(\Sigma-\left(\mu_{0}^{1} \Sigma^{-1} \mu_{0}\right)^{-1} \mu_{0} \mu_{0}^{1}\right) \Sigma^{-1} \overline{\mathrm{X}}
$$

Deduce the distribution of the statistic.
(b) Suppose that a chemical engineer considers the time of reaction for a chemical process as a function of the type of catalyst used. Four catalysts are being investigated and the procedure consists of selecting a batch of raw materials. The observations recorded are as shown below :

	Batch of Raw Materials			
Catalyst	1	2	3	4
1	73	75	68	-
2	75	-	72	75
3	73	74	-	71
4	-	75	67	72

$\begin{array}{ll}\text { Identify the design and analyse it. } & 10 \\ \text { (Tables } 2(a) \text { and } 2(b) \text { are provided at the end.) } & \end{array}$
(c) Let X_{1} and X_{2} be independent random vectors of order ($\mathrm{n}_{1} \times \mathrm{p}$) and $\left(n_{2} \times p\right)$ respectively and let n_{i} rows of $X_{i}(i=1,2)$ be independently and identically distributed as $\mathrm{N}_{\mathrm{p}}\left(\mu_{\mathrm{i}}, \Sigma_{\mathrm{i}}\right)$.

Show that for $\mu_{1}=\mu_{2}$ and $\Sigma_{1}=\Sigma_{2}$,
$\frac{\mathrm{n}_{1} \mathrm{n}_{2}}{\mathrm{n}} \mathrm{D}^{2} \simeq \mathrm{~T}^{2}(\mathrm{p}, \mathrm{n}-2)$,
where $n=n_{1}+n_{2}, D^{2}$ denotes sample Mahalanobis distance statistic and T^{2} denotes the Hotelling's T^{2}.
(d) Find an unbiased estimator of the population mean under probability proportional to size (PPS) sampling with replacement. Find the variance of this estimator and also give an estimator of this variance.

Q7. (a) In a simple linear regression problem $Y=\beta_{0}+\beta_{1} X+\varepsilon, \varepsilon \sim N\left(0, \sigma^{2}\right)$, in which a patient's response Y to a new drug B is to be related to his response X to a standard drug A. Suppose 10 pairs of observations $\left(\mathrm{y}_{\mathrm{i}}, \mathrm{x}_{\mathrm{i}}\right), \mathrm{i}=1 \ldots 10$ are obtained.
(i) Determine the MLEs of $\hat{\beta}_{0}, \hat{\beta}_{1}$ and $\hat{\sigma}^{2}$ of their corresponding parameters,
(ii) Obtain variance ($\hat{\beta}_{0}$), variance $\left(\hat{\beta}_{1}\right)$ and $\operatorname{corr}\left(\hat{\beta}_{0}, \hat{\beta}_{1}\right)$.
(b) In a two-way layout with k observations in each cell ($\mathrm{k} \geq 2$), construct a test of the null hypothesis that all the interactions are zero. (Model and all assumptions are required to be specified in detail).
(c) For the covariance matrix given by

$$
\sum=\left(\begin{array}{cc}
1 & 4 \\
4 & 100
\end{array}\right)
$$

obtain the proportion of the total population variance explained by the first principal component.
(d) In simple random sampling where n paired observations $\left(y_{i}, x_{i}\right), i=1 \ldots n$ are drawn, obtain the regression estimators and derive its large sample variance.

Q8. (a) Use the method of Lagrange's multipliers to show that for a least squares problem,
$T=(\mathbf{Y}-X \boldsymbol{\beta})^{\prime}(\mathbf{Y}-X \boldsymbol{\beta})+\lambda^{\prime}(\mathbf{d}-\mathrm{C} \boldsymbol{\beta})$
is minimized with respect to β and λ where
$\hat{\beta}=\mathbf{b}+\left(\mathrm{X}^{\prime} \mathrm{X}\right)^{-1} \mathrm{C}^{\prime}\left[\mathrm{C}\left(\mathrm{X}^{\prime} \mathrm{X}\right)^{-1} \mathrm{C}^{\prime}\right]^{-1}(\mathbf{d}-\mathrm{Cb})$
where \mathbf{b} is unrestricted least squares estimator of β.
(b) Let there be two populations Π_{1} and Π_{2}. It is known that about 30% of all objects belong to Π_{2} and
$\mathrm{C}(2 \mid 1)$: cost incurred when a Π_{1} observation is incorrectly classified as Π_{2} observation $=15$;
$\mathrm{C}(1 \mid 2)$: cost incurred when a Π_{2} observation is incorrectly classified as Π_{1} observation $=10$.
Suppose the two density functions $\mathrm{f}_{1}(\mathrm{x})$ and $\mathrm{f}_{2}(\mathrm{x})$ (corresponding to Π_{1} and Π_{2}) are evaluated at a new observation x_{0} and $f_{1}\left(x_{0}\right)=0 \cdot 32$, $\mathrm{f}_{2}\left(\mathrm{x}_{0}\right)=0 \cdot 56$.

Can the new observation be classified from Π_{1} or Π_{2} ?
(c) A chemical experiment was performed to investigate the effect of extrusion temperature X_{1} and cooling temperature X_{2} on the compressibility of a finished product. Knowledge of the process suggested that a model of the form $Y=\beta_{0}+\beta_{1} X_{1}+\beta_{2} X_{2}+B_{12} X_{1} X_{2}+\varepsilon$ would satisfactorily explain the variation observed. Two levels of extrusion temperature and two levels of cooling temperature were chosen and all four of the combinations were performed. Each of the four experiments was carried out four times and the data yielded the following information :

ANOVA

S.V	d.f	S.S	MSS
Due to reg.	-	$881 \cdot 2500$	
β_{0}	1	$798 \cdot 0625$	
β_{1}	1	$18 \cdot 0625$	
β_{2}	-	-	
β_{12}	-	$5 \cdot 0625$	
Residual	-	-	
Total	16	$921 \cdot 000$	

Using $\alpha=0.05$, examine the following questions :
(i) Is the overall regression equation statistically significant ?
(ii) Are all β significant?
(Tables 2(a) and 2(b) are provided at the end.)
(d) For a $\mathrm{p} \times \mathrm{p}$ Latin square with rows $\left(\alpha_{\mathrm{i}}\right)$, columns $\left(\beta_{\mathrm{k}}\right)$ and treatments (τ_{j}) fixed, obtain least squares estimators of α_{i}, β_{k} and $\tau_{j}, i, j, k=1, \ldots p$. Derive the missing value formula (when just one observation is missing) for the Latin square design.

TABLE 1(a)

A-38 APPENDIX STATISTICAL TABLES
TABLE D Normal Curve Areas $P\left(z \leq z_{0}\right)$. Entries in the Body of the Table are Areas Between $-\infty$ and z

TABLE 1(b)

APPENDIX STATISTICAL TABLES

TABLE D (continued)

z	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09	z
0.00	. 5000	. 5040	. 5080	. 5120	. 5160	. 5199	. 5239	. 5279	. 5319	. 5359	0.00
0.10	. 5398	. 5438	. 5478	. 5517	. 5557	. 5596	. 5636	. 5675	. 5714	. 5753	0.10
0.20	. 5793	. 5832	. 5871	. 5910	. 5948	. 5987	. 6026	. 6064	. 6103	. 6141	0.20
0.30	. 6179	. 6217	. 6255	. 6293	. 6331	. 6368	. 6406	. 6443	. 6480	. 6517	0.30
0.40	. 6554	. 6591	. 6628	. 6664	. 6700	. 6736	. 6772	. 6808	. 6844	. 6879	0.40
0.50	. 6915	. 6950	. 6985	. 7019	. 7054	.	. 7123	,	. 7190	. 7224	0.50
0.60	. 7257	. 7291	. 7324	. 7357	. 7389	. 7422	. 7454	. 7486	. 7517	. 7549	0.60
0.70	. 7580	. 7611	. 7642	. 7673	. 7704	. 7734	. 7764	. 7794	. 7823	. 7852	0.70
0.80	. 7881	. 7910	. 7939	. 7967	. 7995	. 8023	. 8051	. 8078	. 8106	. 8133	0.80
0.90	. 8159	. 8186	. 8212	. 8238	. 8264	. 8289	. 8315	. 8340	. 8365	. 8389	0.90
1.00	. 8413	. 8438	. 8461	. 8485	. 8508	. 8531	. 8554	. 8577	. 8599	. 8621	1.00
1.10	. 8643	. 8665	. 8686	. 8708	. 8729	. 8749	. 8770	. 8790	8810	. 8830	1.10
1.20	. 8849	. 8869	. 8888	. 8907	. 8925	.8944	. 8962	8980	. 8997	. 9015	1.20
1.30	. 9032	. 9049	. 9066	. 9082	. 9099	. 9115	. 9131	. 9147	. 9162	. 9177	1.30
1.40	. 9192	. 9207	. 9222	. 9236	. 9251	. 9265	. 9279	. 9292	. 9306	. 9319	1.40
1.50	. 9332	. 9345	. 9357	. 9370	. 9382	. 9394	. 9406	. 9418	. 9429	9441	1.50
1.60	. 9452	. 9463	. 9474	. 9484	. 9495	. 9505	. 9515	. 9525	. 9535	. 9545	1.60
1.70	. 9554	. 9564	. 9573	. 9582	. 9591	9599	. 9608	. 9616	. 9625	. 9633	1.70
1.80	. 9641	. 9649	. 9656	. 9664	. 9671	. 9678	. 9686	. 9693	. 9699	. 9706	1.80
1.90	. 9713	. 9719	. 9726	. 9732	. 9738	. 9744	. 9750	. 9756	. 9761	. 9767	1.90
2.00	. 9772	9778	. 9783	. 9788	. 9793	. 9798	. 9803	. 9808	9812	. 9817	2.00
2.10	. 9821	. 9826	. 9830	.9834	. 9838	. 9842	. 9846	. 9850	. 9854	. 9857	2.10
2.20	. 9861	. 9864	, 9868	. 9871	. 9875	. 9878	. 9881	. 9884	. 9887	. 9890	2.20
2.30	. 9893	. 9896	. 9898	. 9901	. 9904	. 9906	. 9909	. 9911	. 9913	. 9916	2.30
2.40	. 9918	. 9920	. 9922	. 9925	. 9927	. 9929	. 9931	. 9932	. 9934	. 9936	2.40
2.50	. 9938	. 9940	. 9941	. 9943	. 9945	. 9946	. 9948	. 9949	. 9951	. 9952	2.50
2.60	. 9953	. 9955	. 9956	. 9957	. 9959	. 9960	. 9961	. 9962	9963	. 9964	2.60
2.70	. 9965	. 9966	. 9967	. 9968	. 9969	. 9970	. 9971	. 9972	9973	. 9974	2.70
2.80	. 9974	9975	. 9976	. 9977	. 9977	. 9978	9979	. 9979	. 9980	. 9981	2.80
2.90	. 9981	. 9982	. 9982	. 9983	. 9984	. 9984	. 9985	. 9985	. 9986	. 9986	2.90
3.00	.9987	. 9987	. 9987	. 9988	. 9988	. 9989	. 9989	. 9989	. 9990	. 9990	3.00
3.10	. 9990	. 9991	. 9991	. 9991	. 9992	. 9992	. 9992	. 9992	. 9993	. 9993	3.10
3.20	. 9993	. 9993	. 9994	. 9994	. 9994	. 9994	. 9994	. 9995	. 9995	. 9995	3.20
3.30	. 9995	. 9995	9995	. 9996	. 9996	. 9996	. 9996	9996	. 9996	. 9997	3.30
3.40	. 9997	. 9997	. 9997	. 9997	. 9997	. 9997	. 9997	. 9997	. 9997	. 9998	3.40
3.50	. 9998	. 9998	. 9998	. 9998	. 9998	. 9998	. 9998	9998	.9998	. 9998	3.50
3.60	. 9998	. 9998	. 9999	. 9999	. 9999	. 9999	9999	.9999	. 9999	. 9999	3.60
3.70	. 9999	. 9999	. 9999	. 9999	. 9999	. 9999	. 9999	9999	9999	. 9999	3.70
3.80	.9999	.9999	.9999	. 9999	. 9999	. 9999	. 9999	. 9999	. 9999	. 9999	3.80

TABLE 2(a)

A-48 APPENDIX STATISTICAL TABLES

TABLE G (continued)

$F_{.95}$									
Denominator Degrees of	Numerator Degrees of Freedom								
Freedom	1	2	3	4	5	6	7	8	9
1	161.4	199.5	215.7	224.6	230.2	234.0	236.8	238.9	240.5
2	18.51	19.00	19.16	19.25	19.30	19.33	19.35	19.37	19.38
3	10.13	9.55	9.28	9.12	9.01	8.94	8.89	8.85	8.81
4	7.71	6.94	6.59	6.39	6.26	6.16	6.09	6.04	6.00
5	6.61	5.79	5.41	5.19	5.05	4.95	4.88	4.82	4.77
6	5.99	5.14	4.76	4.53	4.39	4.28	4.21	4.15	4.10
7	5.59	4.74	4.35	4.12	3.97	3.87	3.79	3.73	3.68
8	5.32	4.46	4.07	3.84	3.69	3.58	3.50	3.44	3.39
9	5.12	4.26	3.86	3.63	3.48	3.37	3.29	3.23	3.18
10	4.96	4.10	3.71	3.48	3.33	3.22	3.14	3.07	3.02
11	4.84	3.98	3.59	3.36	3.20	3.09	3.01	2.95	2.90
12	4.75	3.89	3.49	3.26	3.11	3.00	2.91	2.85	2.80
13	4.67	3.81	3.41	3.18	3.03	2.92	2.83	2.77	2.71
14	4.60	3.74	3.34	3.11	2.96	2.85	2.76	2.70	2.65
15	4.54	3.68	3.29	3.06	2.90	2.79	2.71	2.64	2.59
16	4.49	3.63	3.24	3.01	2.85	2.74	2.66	2.59	2.54
17	4.45	3.59	3.20	2.96	2.81	2.70	2.61	2.55	2.49
18	4.41	3.55	3.16	2.93	2.77	2.66	2.58	2.51	2.46
19	4.38	3.52	3.13	2.90	2.74	2.63	2.54	2.48	2.42
20	4.35	3.49	3.10	2.87	2.71	2.60	2.51	2.45	2.39
21	4.32	3.47	3.07	2.84	2.68	2.57	2.49	2.42	2.37
22	4.30	3.44	3.05	2.82	2.66	2.55	2.46	2.40	2.34
23	4.28	3.42	3.03	2.80	2.64	2.53	2.44	2.37	2.32
24	4.26	3.40	3.01	2.78	2.62	2.51	2.42	2.36	2.30
25	4.24	3.39	2.99	2.76	2.60	2.49	2.40	2.34	2.28
26	4.23	3.37	2.98	2.74	2.59	2.47	2.39	2.32	2.27
27	4.21	3.35	2.96	2.73	2.57	2.46	2.37	2.31	2.25
28	4.20	3.34	2.95	2.71	2.56	2.45	2.36	2.29	2.24
29	4.18	3.33	2.93	2.70	2.55	2.43	2.35	2.28	2.22
30	4.17	3.32	2.92	2.69	2.53	2.42	2.33	2.27	2.21
40	4.08	3.23	2.84	2.61	2.45	2.34	2.25	2.18	2.12
60	4.00	3.15	2.76	2.53	2.37	2.25	2.17	2.10	2.04
120	3.92	3.07	2.68	2.45	2.29	2.17	2.09	2.02	1.96
∞	3.84	3.00	2.60	2.37	2.21	2.10	2.01	1.94	1.88

TABLE 2(b)
APPENDIX STATISTICAL TABLES
TABLE G (continued)

Denominator Degrees of Freedom	Numerator Degrees of Freedom									
	10	12	15	20	24	30	40	60	120	∞
1	241.9	243.9	245.9	248.0	249.1	250.1	251.1	252.2	253.3	254.3
2	19.40	19.41	19.43	19.45	19.45	19.46	19.47	19.48	19.49	19.50
3	8.79	8.74	8.70	8.66	8.64	8.62	8.59	8.57	8.55	8.53
4	5.96	5.91	5.86	5.80	5.77	5.75	5.72	5.69	5.66	5.63
5	4.74	4.68	4.62	4.56	4.53	4.50	4.46	4.43	4.40	4.36
6	4.06	4.00	3.94	3.87	3.84	3.81	3.77	3.74	3.70	3.67
7	3.64	3.57	3.51	3.44	3.41	3.38	3.34	3.30	3.27	3.23
8	3.35	3.28	3.22	3.15	3.12	3.08	3.04	3.01	2.97	2.93
9	3.14	3.07	3.01	2.94	2.90	2.86	2.83	2.79	2.75	2.71
10	2.98	2.91	2.85	2.77	2.74	2.70	2.66	2.62	2.58	2.54
11	2.85	2.79	2.72	2.65	2.61	2.57	2.53	2.49	2.45	2.40
12	2.75	2.69	2.62	2.54	2.51	2.47	2.43	2.38	2.34	2.30
13	2.67	2.60	2.53	2.46	2.42	2.38	2.34	2.30	2.25	2.21
14	2.60	2.53	2.46	2.39	2.35	2.31	2.27	2.22	2.18	2.13
15	2.54	2.48	2.40	2.33	2.29	2.25	2.20	2.16	2.11	2.07
16	2.49	2.42	2.35	2.28	2.24	2.19	2.15	2.11	2.06	2.01
17	2.45	2.38	2.31	2.23	2.19	2.15	2.10	2.06	2.01	1.96
18	2.41	2.34	2.27	2.19	2.15	2.11	2.06	2.02	1.97	1.92
19	2.38	2.31	2.23	2.16	2.11	2.07	2.03	1.98	1.93	1.88
20	2.35	2.28	2.20	2.12	2.08	2.04	1.99	1.95	1.90	1.84
21	2.32	2.25	2.18	2.10	2.05	2.01	1.96	1.92	1.87	1.81
22	2.30	2.23	2.15	2.07	2.03	1.98	1.94	1.89	1.84	1.78
23	2.27	2.20	2.13	2.05	2.01	1.96	1.91	1.86	1.81	1.76
24	2.25	2.18	2.11	2.03	1.98	1.94	1.89	1.84	1.79	1.73
25	2.24	2.16	2.09	2.01	1.96	1.92	1.87	1.82	1.77	1.71
26	2.22	2.15	2.07	1.99	1.95	1.90	1.85	1.80	1.75	1.69
27	2.20	2.13	2.06	1.97	1.93	1.88	1.84	1.79	1.73	1.67
28	2.19	2.12	2.04	1.96	1.91	1.87	1.82	1.77	1.71	1.65
29	2.18	2.10	2.03	1.94	1.90	1.85	1.81	1.75	1.70	1.64
30	2.16	2.09	2.01	1.93	1.89	1.84	1.79	1.74	1.68	1.62
40	2.08	2.00	1.92	1.84	1.79	1.74	1.69	1.64	1.58	1.51
60	1.99	1.92	1.84	1.75	1.70	1.65	1.59	1.53	1.47	1.39
120	1.91	1.83	1.75	1.66	1.61	1.55	1.50	1.43	1.35	1.25
∞	1.83	1.75	1.67	1.57	1.52	1.46	1.39	1.32	1.22	1.00

