

Signature and Name of Invigilator

1. (Signature)		OMR She	et No	o .: To	 o be fille	d by t	he Ca	ndida	 ate)
(Name)		Roll No.							
2. (Signature)		Kon No.		n figur	es as pe	 r adm	ission	card)
(Name)	PAPER - II	Roll No	(-		r.				
J 0 8 7 1 8	COMPUTER SCIENC	CE ANI)		(In wo	ords)			
Time : 2 hours]	APPLICATION				[Maxiı	num	Maı	ks:	20

Number of Pages in this Booklet: 24

Instructions for the Candidates

- 1. Write your roll number in the space provided on the top of this page.
- This paper consists of hundred multiple-choice type of questions.
- 3. At the commencement of examination, the question booklet will be given to you. In the first 5 minutes, you are requested to open the booklet and compulsorily examine it as below:
 - (i) To have access to the Question Booklet, tear off the paper seal on the edge of this cover page. Do not accept a booklet without sticker-seal and do not accept an open booklet.
 - (ii) Tally the number of pages and number of questions in the booklet with the information printed on the cover page. Faulty booklets due to pages/questions missing or duplicate or not in serial order or any other discrepancy should be got replaced immediately by a correct booklet from the invigilator within the period of 5 minutes. Afterwards, neither the Question Booklet will be replaced nor any extra time will be given.
 - (iii) After this verification is over, the Test Booklet Number should be entered on the OMR Sheet and the OMR Sheet Number should be entered on this Test Booklet.
- 4. Each item has four alternative responses marked (1), (2), (3) and (4). You have to darken the circle as indicated below on the correct response against each item.

Example: ① ② ④ where (3) is the correct response.

- 5. Your responses to the items are to be indicated in the OMR Sheet given inside the Booklet only. If you mark your response at any place other than in the circle in the OMR Sheet, it will not be evaluated.
- 6. Read instructions given inside carefully.
- 7. Rough Work is to be done in the end of this booklet.
- 8. If you write your Name, Roll Number, Phone Number or put any mark on any part of the OMR Sheet, except for the space allotted for the relevant entries, which may disclose your identity, or use abusive language or employ any other unfair means, such as change of response by scratching or using white fluid, you will render yourself liable to disqualification.
- 9. You have to return the original OMR Sheet to the invigilators at the end of the examination compulsorily and must not carry it with you outside the Examination Hall. You are however, allowed to carry original question booklet on conclusion of examination.
- 10. Use only Blue/Black Ball point pen.
- 11. Use of any calculator or log table etc., is prohibited.
- 12. There are no negative marks for incorrect answers.

Number of Questions in this Booklet: 100

परीक्षार्थियों के लिए निर्देश

- इस पृष्ठ के ऊपर नियत स्थान पर अपना रोल नम्बर लिखिए।
- 2. इस प्रश्न-पत्र में सौ बहुविकल्पीय प्रश्न हैं।
- परीक्षा प्रारम्भ होने पर, प्रश्न-पुस्तिका आपको दे दी जायेगी। पहले पाँच मिनट आपको प्रश्न-पुस्तिका खोलने तथा उसकी निम्नलिखित जाँच के लिए दिये जायेंगे, जिसकी जाँच आपको अवश्य करनी है:
 - (i) प्रश्न-पुस्तिका खोलने के लिए पुस्तिका पर लगी कागज की सील को फाड़ लें। खुली हुई या बिना स्टीकर-सील की पुस्तिका स्वीकार न करें।
 - (ii) कवर पृष्ठ पर छपे निर्देशानुसार प्रश्न-पुस्तिका के पृष्ठ तथा प्रश्नों की संख्या को अच्छी तरह चैक कर लें िक ये पूरे हैं। दोषपूर्ण पुस्तिका जिनमें पृष्ठ/प्रश्न कम हों या दुबारा आ गये हों या सीरियल में न हों अर्थात् िकसी भी प्रकार की त्रुटिपूर्ण पुस्तिका स्वीकार न करें तथा उसी समय उसे लौटाकर उसके स्थान पर दूसरी सही प्रश्न-पुस्तिका ले लें। इसके लिए आपको पाँच मिनट दिये जायेंगे। उसके बाद न तो आपको प्रश्न-पुस्तिका वापस ली जायेगी और न ही आपको अतिरिक्त समय दिया जायेगा।
 - (iii) इस जाँच के बाद प्रश्न-पुस्तिका का नंबर OMR पत्रक पर अंकित करें और OMR पत्रक का नंबर इस प्रश्न-पुस्तिका पर अंकित कर दें।
- प्रत्येक प्रश्न के लिए चार उत्तर विकल्प (1), (2), (3) तथा (4) दिये गये हैं।
 आपको सही उत्तर के वृत्त को पेन से भरकर काला करना है जैसा कि नीचे दिखाया गया है।

उदाहरण: 1 2 ● 4 जबिक (3) सही उत्तर है।

- 5. प्रश्नों के उत्तर केवल प्रश्न पुस्तिका के अन्दर दिये गये OMR पत्रक पर ही अंकित करने हैं। यदि आप OMR पत्रक पर दिये गये वृत्त के अलावा किसी अन्य स्थान पर उत्तर चिह्नांकित करते हैं, तो उसका मूल्यांकन नहीं होगा।
- अन्दर दिये गये निर्देशों को ध्यानपूर्वक पढें।
- 7.) कच्चा काम (Rough Work) इस पुस्तिका के अन्तिम पृष्ठ पर करें।
- 8. यदि आप OMR पत्रक पर नियत स्थान के अलावा अपना नाम, रोल नम्बर, फोन नम्बर या कोई भी ऐसा चिह्न जिससे आपकी पहचान हो सके, अंकित करते हैं अथवा अभद्र भाषा का प्रयोग करते हैं, या कोई अन्य अनुचित साधन का प्रयोग करते हैं, जैसे कि अंकित किये गये उत्तर को मिटाना या सफेद स्याही से बदलना तो परीक्षा के लिये अयोग्य घोषित किये जा सकते हैं।
- आपको परीक्षा समाप्त होने पर मूल OMR पत्रक निरीक्षक महोदय को लौटाना आवश्यक है और परीक्षा समाप्ति के बाद उसे अपने साथ परीक्षा भवन से बाहर न लेकर जायें। हालांकि आप परीक्षा समाप्ति पर मूल प्रश्न-पुस्तिका अपने साथ ले जा सकते हैं।
- 10. केवल नीले/काले बाल प्वाईंट पेन का ही प्रयोग करें।
- 11. किसी भी प्रकार का संगणक (कैलकुलेटर) या लाग टेबल आदि का प्रयोग वर्जित है।
- 12. गलत उत्तरों के लिए कोई नकारात्मक अंक नहीं हैं।

1

J-08718

P.T.O.

COMPUTER SCIENCE AND APPLICATIONS

PAPER - II

Note: This paper contains **hundred** (100) objective type questions of **two** (2) marks each. All questions are **compulsory**.

- 1. The definitions in an XML document are said to be _____ when the tagging system and definitions in the DTD are all in compliance.
 - (1) well-formed

(2) reasonable

(3) valid

- (4) logical
- 2. Consider the JavaScript Code:

```
var y= "12";
function f() {
    var y="6";
    alert (this.y);
    function g() {alert (y); }
    g();
}
f();
```

If M is the number of alert dialog boxes generated by this JavaScript code and D1, D2, ..., D_M represents the content displayed in each of the M dialog boxes, then :

- (1) M=3; D1 displays "12"; D2 displays "6"; D3 displays "12".
- (2) M=3; D1 displays "6"; D2 displays "12"; D3 displays "6".
- (3) M=2; D1 displays "6"; D2 displays "12".
- (4) M=2; D1 displays "12"; D2 displays "6".

3. What is the output of the following JAVA program? class simple public static void main(String[] args) simple obj = new simple(); obj.start(); void start() long [] $P = \{3, 4, 5\};$ long [] Q= method (P); System.out.print (P[0] + P[1] + P[2] + ":");System.out.print (Q[0] + Q[1] + Q[2]); long [] method (long [] R) R [1]=7; return R; } //end of class (1) 12:15 (2) 15:12 (4) 15:15 What is the output of the following 'C' program? (Assuming little - endian representation of #include <stdio.h>

4. multi-byte data in which Least Significant Byte (LSB) is stored at the lowest memory address.)

```
#include <stdlib.h>
/* Assume short int occupies two bytes of storage */
int main ()
     union saving
           short int one;
           char two[2];
      union saving m;
     m.two [0] = 5;
     m.two [1] = 2;
     printf("%d, %d, %d\n", m.two [0], m.two [1], m.one);
}/* end of main */
(1)
     5, 2, 1282
                       (2)
                            5, 2, 52
                                              (3)
                                                   5, 2, 25
```

(4)

5, 2, 517

5. Given below are three implementations of the swap() function in C++:

(a)	(b)	(c)
void swap (int a, int b)	void swap (int &a, int &b)	void swap (int *a, int *b)
{	{	{
int temp;	int temp;	int *temp;
temp = a;	temp = a;	temp = a;
a = b;	a = b;	a = b;
b = temp;	b = temp;	b = temp;
}	}	}
int main()	int main()	int main()
{	{	{
int $p = 0$, $q = 1$;	int $p = 0$, $q = 1$;	int $p = 0$, $q = 1$;
swap (p, q);	swap (p, q);	swap (&p, &q);
}	}	}

Which of these would actually swap the contents of the two integer variables p and q?

- (1) (a) only
- (2) (b) only
- (3) (c) only (4)
 - 4) (b) and (c) only
- 6. In Java, which of the following statements is/are True?
 - S1: The 'final' keyword applied to a class definition prevents the class from being extended through derivation.
 - S2: A class can only inherit one class but can implement multiple interfaces.
 - S3: Java permits a class to replace the implementation of a method that it has inherited. It is called method overloading.

Code:

(1) S1 and S2 only

(2) S1 and S3 only

(3) S2 and S3 only

- (4) All of S1, S2 and S3
- 7. Which of the following statements is/are True?
 - P: C programming language has a weak type system with static types.
 - Q: Java programming language has a strong type system with static types.

Code:

(1) P only

(2) Q only

(3) Both P and Q

(4) Neither P nor Q

- 8. A graphic display system has a frame buffer that is 640 pixels wide, 480 pixels high and 1 bit of color depth. If the access time for each pixel on the average is 200 nanoseconds, then the refresh rate of this frame buffer is approximately:
 - (1) 16 frames per second
- (2) 19 frames per second
- (3) 21 frames per second
- (4) 23 frames per second
- **9.** Which of the following statements is/are **True** regarding the solution to the visibility problem in 3D graphics?
 - S1: The Painter's algorithm sorts polygons by depth and then paints (scan converts) each Polygon on to the screen starting with the most nearest polygon.
 - S2: Backface Culling refers to eliminating geometry with backfacing normals.

Code:

(1) S1 only

(2) S2 only

(3) Both S1 and S2

- (4) Neither S1 nor S2
- 10. Consider the matrix $M = \begin{bmatrix} 2 & 0 & 2 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}$ representing a set of planar (2D) geometric

transformations in homogeneous coordinates. Which of the following statements about the matrix M is **True**?

- (1) M represents first, a scaling of vector (2, 1) followed by translation of vector (1, 1)
- (2) M represents first, a translation of vector (1, 1) followed by scaling of vector (2, 1)
- (3) M represents first, a scaling of vector (3, 1) followed by shearing of parameters (-1, 1)
- (4) M represents first, a shearing of parameters (-1, 1) followed by scaling of vector (3, 1)
- **11.** Assume the following regarding the development of a software system P:
 - Estimated lines of code of P: 33, 480 LOC
 - Average productivity for P: 620 LOC per person-month
 - Number of software developers : 6
 - Average salary of a software developer : ₹ 50,000 per month

If E, D and C are the estimated development effort (in person-months), estimated development time (in months), and estimated development cost (in T Lac) respectively, then (E, D, C)

- (1) (48, 8, 24)
- (2) (54, 9, 27)
- (3) (60, 10, 30)
- (4) (42, 7, 21)

12.	Match the following in Software Engineering :									
		List	- I						List - II	
	(a)	Prod	luct C	omple	exity			(i)	Software Requirements Definition	
	(b)	Struc	ctured	Syste	em Ar	nalysis	3	(ii)	Software Design	
	(c)	Cou	pling	and C	Cohesio	on		(iii)	Validation Technique	
	(d)	Sym	bolic 1	Execu	tion			(iv)	Software Cost Estimation	
	Cod	e :								
		(a)	(b)	(c)	(d)					
	(1)	(ii)	(iii)	(iv)	(i)					
	(2)	(iii)	(i)	(iv)	(ii)					
	(3)	(iv)	(i)	(ii)	(iii)					
	(4)	(iii)	(iv)	(i)	(ii)					
		_								
13.	Which one of the following is not typically provided by Source Code Management Software?									
	(1)			satior	ı			(2)	Versioning and Revision history	
	(3)			ghligh				(4)	Project forking	
									. 0	
14.									ar 2017 and for each crash, it took 2 minutes to	
	resta			imate	ly, wh	nat wa	s the s	oftwa	are availability in that year ?	
	(1)		924%					(2)	97.9924%	
	(3)	98.9	924%					(4)	99.9924%	
15.					/laturi /ist-II		els/Cl	MMI	staged representations in List- I with their	
	011011	List				0			List - II	
	(a)	Initia				(i)	Proces	sses a	are improved quantitatively and continually.	
	(b)		eatabl	e		(ii)			or a project comes from a template for plans.	
	(c)	Defi				(iii)	_		uses processes that can be measured	
	(0)					()	quant	_	-	
	(d)		aged	\		(iv)	There	may	not exist a plan or it may be abandoned.	
	(e)	Opti	mizin	g		(v)	There	's a p	plan and people stick to it.	
	Cod	e :								
		(a)	(b)	(c)	(d)	(e)				
	(1)	(iv)	(v)	(i)	(iii)	(ii)				
	(2)	(i)	(ii)	(iv)	(v)	(iii)				
	(3)	(v)	(iv)	(ii)	(iii)	(i)				
	(4)	(iv)	(v)	(ii)	(iii)	(i)				
T nor	719							6	n	
J-08.	J-08718							6	Paper-II	

16.		pling is a measu ch of the followi		_						odules.		
	P:	Common coupl passing it infor	0			nodul	e controls the	flow of a	nother mod	lule by		
	Q:	In data coupling through param		complete d	lata s	tructu	re is passed fr	om one r	nodule to a	nother		
	R:	Stamp coupling parts of it.	g occui	rs when mo	dules	share	a composite	data struc	cture and us	se only		
	Cod	e :										
	(1)	P and Q only			(2)	P ar	d R only					
	(3)	Q and R only			(4)	A11 (of P, Q and R					
17.	A so	oftware design pa	attern o	often used t	o rest	rict ac	cess to an obje	ect is :				
	(1)	adapter	(2)	decorator		(3)	delegation	(4)	proxy			
18.	Reas	sons to re-engine	er a so	ftware incl	ıde :							
	P:	Allow legacy so	oftwar	e to quickly	adap	t to th	ne changing re	quiremen	its			
	Q:	Upgrade to newer technologies/platforms/paradigm (for example, object-oriented)										
	R:	Improve software maintainability										
	S:	Allow change i	n the	functionalit	y and	archi	tecture of the	software				
	Cod	e :										
	(1)	P, R and S only	,		(2)	P ar	d R only					
	(3)	P, Q and S only	7		(4)	P, Q	and R only					
19.		ch of the followir	ng is no	ot a key stra	tegy f	ollow	ed by the clean	n room ap	proach to so	oftware		
	(1)	Formal specific	ation		(2)	Dyn	amic verificat	ion				
	(3)	Incremental de	velopr	nent	(4)	Stati	stical testing o	of the syst	rem			
20.	Whi	ch of the following	ng stat	ements is/a	are Tr	ue ?						
	P:	Refactoring is the alter the extern	-		0		•		•	oes not		
	Q:	An example of discovered afte		_	_	new fo	eatures to satis	sfy a cust	omer requi	rement		
	Cod	e :										
	(1)	P only			(2)	Q 01	nly					

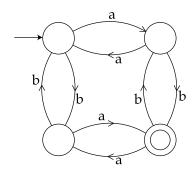
(4)

Neither P nor Q

21.	The	solution of th	ne recurrei	nce relation							
	T(m	T(3m/4)	+ 1 is:								
	(1)	θ (lg m)			(2)	θ (m	1)				
	(3)	θ (mlg m)			(4)	θ (lg	lg m)				
22.	the		heap an	d the right						from the arr	
	(1)	3, 14	(2)	3, 10		(3)	4, 14		(4)	4, 10	
23.										I to insert the ocation of key	
	(1)	3	(2)	4		(3)	5	C	(4)	6	
24.	Whi	ch of the foll	owing algo	orithms solv	es the	e singl	le-source	shortest	paths	?	
	(1)	Prim's algo	rithm								
	(2)	Floyd - Wa	rshall algo	rithm							
	(3)	Johnson's a	lgorithm	*							
	(4)	Dijkstra's a	lgorithm	0							
25.	0.40		•					_		ne probability I have the av	
	(1)	2.4	(2)	1.87		(3)	3.0		(4)	2.15	
26.		nary search ted a strictly b		•				-empty	left ar	nd right subtr	ees is
	(1)	cannot have	e more tha	ın 37 nodes	;						

(2) has exactly 37 nodes

(3) has exactly 35 nodes


cannot have more than 35 nodes

27.	Mato	ch the	follov	wing v	with r	espec	t to al	gorith	m pai	adigms :			
			List	- I						Lis	t - II		
	(a)	The	8-Que	en's p	oroble	m			(i)	Dynamic	programm	ing	
	(b)	Sing	le-Sou	ırce sł	ortes	t patl	ns		(ii)	Divide a	nd conquer		
	(c)	STR	ASSEI	N's M	atrix 1	nulti	plicatio	on	(iii)	Greedy a	pproach		
	(d)	Opti	mal b	inary	searcl	ı tree	es		(iv)	Backtrac	king		
	Cod	e:											
		(a)	(b)	(c)	(d)								
	(1)	(iv)	(i)	(iii)	(ii)								
	(2)	(iv)	(iii)	(i)	(ii)								
	(3)	(iii)	(iv)	(ii)	(i)								
	(4)	(iv)	(iii)	(ii)	(i)								
28.		The maximum number of comparisons each item is 5 digit octal number) :						s need	ded to	sort 9 ite	ms using ra	ndix sort	is (assume
	(1)	45			(2)	72			(3)	360	(4)	450	
29.							ry inte				5 children.	The nun	nber of left
	(1)	30			(2)	33			(3)	45	(4)	125	
30.							'n' va				an algoritl	nm that o	determines
	(1)	Loga	arithm	nic				(2)	Line	ar			
	(3)	Qua	dratic					(4)	Expo	onential			
			N										
31.	Two	finite	state	mach	ines a	re sai	d to be	e equi	valent	t if they:			
	(1)	Hav	e the s	same 1	numbe	er of	edges						
	(2)	Hav	e the s	same 1	numb	er of	states						
	(3)	Reco	gnize	the sa	ame se	et of	tokens						
	(4)	Hav	e the s	same 1	numb	er of	states a	and e	dges				
T no	J-08718												Dames II
J-08.	/10							9					Paper-II

32. The finite state machine given in figure below recognizes :

- (1) any string of odd number of a's
- (2) any string of odd number of b's
- (3) any string of even number of a's and odd number of b's
- (4) any string of odd number of a's and odd number of b's
- **33.** A pushdown automata behaves like a Turing machine when the number of auxiliary memory is:
 - (1) 0
- (2) 1
- (3) 1 or more
- (4) 2 or more
- 34. Pushdown automata can recognize language generated by______.
 - (1) Only context free grammar
 - (2) Only regular grammar
 - (3) Context free grammar or regular grammar
 - (4) Only context sensitive grammar
- **35.** To obtain a string of n Terminals from a given Chomsky normal form grammar, the number of productions to be used is :
 - (1) 2n-1
- (2) 2n
- (3) n+1
- (4) n^2

36. Consider the following two Grammars :

 $G_1: S \rightarrow SbS \mid a$

 $G_2: S \rightarrow aB \mid ab, A \rightarrow GAB \mid a, B \rightarrow ABb \mid b$

Which of the following option is **correct**?

- (1) Only G_1 is ambiguous
- (2) Only G₂ is ambiguous
- (3) Both G_1 and G_2 are ambiguous
- (4) Both G_1 and G_2 are not ambiguous

37.	Cont	text sensitive lang	guage	can be recog	gnize	d by a	a :			
	(1)	Finite state mac	hine							
	(2)	Deterministic fi	nite a	utomata						
	(3)	Non-determinis	tic fin	ite automata	a					
	(4)	Linear bounded	auto	mata						
38.	The	set $A = \{ 0^n 1^n 2^n \}$	n=	1, 2, 3,	. } is	an exa	ample of a gr	ammar th	at is :	
	(1)	Context sensitiv	e		(2)	Con	text free			
	(3)	Regular			(4)	Non	e of the abov	e		
39.	A bo	ottom-up parser g	genera	tes:						
	(1)	Left-most deriva	ation i	n reverse						
	(2)	Right-most deri	vation	in reverse						
	(3)	Left-most deriva	ation							
	(4)	Right-most deri	vatior	ı						
4 0.	Cons	sider the followin	g stat	ements():						
	S ₁ :	There exists no the same langua		thm for dec	iding	if any	y two Turing	machines	M_1 and M_2 acce	pt
	S_2 :	The problem of c	letern	nining wheth	ner a T	Turing	machine halt	s on any in	put is undecidabl	le.
	Whi	ch of the followin	ıg opt	ions is corre	ct?					
	(1)	Both S_1 and S_2 a	re co	rect						
	(2)	Both S_1 and S_2 a	re no	t correct						
	(3)	Only S ₁ is correc	et							
	(4)	Only S ₂ is correct	et							
41.	banc	otted ALOHA net lwidth. Find the tl frames per second	hroug							
	(1)	49	(2)	368		(3)	149	(4)	151	
42.	The	period of a signa	l is 10	0 ms. Its fre	quen	cy is _	·			
	(1)	100 ³ Hertz	(2)	10^{-2} KHz		(3)	10^{-3} KHz	(4)	10 ⁵ Hertz	
J-08	718				11				Paper-l	II

43.					otation 1000101			Ü	; IPV4 address in b	inary notation is
	(1)		56.45					(2)	129.11.10.238	
	(3)		11.11					(4)	111.56.11.239	
44.	Whi	ch of	the fo	llowir	ıg state	ment	s are	true ?		
	(a)	Adv	anced	Mobi	le Phoi	ne Sys	stem	(AMPS	6) is a second gener	ation cellular phone system.
	(b)	IS -	95 is a	seco	nd gen	e <mark>rati</mark> o	n cel	lular p	hone system based	on CDMA and DSSS.
	(c)		Third munic	0		n cell	lular	phon	e system will pro	ovide universal personnel
	Cod	e:								
	(1)	(a) a	nd (b)	only				(2)	(b) and (c) only	
	(3)	(a),	(b) an	d (c)				(4)	(a) and (c) only	
45.	Mat	ch the List		wing s	symme	tric b	lock c	ciphers	with correspondir List - II	ng block and key sizes :
	(a)	DES	•				(i)		size 64 and key si een 32 and 448	ze ranges
	(b)	IDE.	A				(ii)	block	size 64 and key si	ze 64
	(c)	BLO	W FIS	SH			(iii)	block	size 128 and key	sizes 128, 192, 256
	(d)	AES	,				(iv)	block	size 64 and key si	ze 128
	Cod	e:								
		(a)	(b)	(c)	(d)					
	(1)	(iv)	(ii)	(i)	(iii)			\ `		
	(2)	(ii)	(iv)	(i)	(iii)					
	(3)	(ii)	(iv)	(iii)	(i)					
	(4)	(iv)	(ii)	(iii)	(i)					
					7					
46 .					ig state					
	(a)				egories					
		(i)			ritched					
		(ii)			ritched					
	71.0	(iii)		_	Switche					
	(b)									during the set up phase.
4	(c)	_	acket	SW1tCl	ung th	ere 1s	no re	esourc	e allocation for pac	kets.
	Cod		nd (L)	\ only-				(2)	(b) and (a) only	
	(1)	` '	nd (b)	•				(2)	(b) and (c) only	
	(3) 	(a) a	nd (c)	шшш				(4)	(a), (b) and (c)	
J-08	8718							12		Paper-II

	(3)	Reveals the secr	et							
	(4)	Gives a challeng	ge .							
48 .	Decr	ypt the message	"WTA	AAD" using	the C	Caesar	Cipher with	kev = 15.		
	(1)	LIPPS	(2)	HELLO		(3)	OLLEH	(4)	DAATW	
4 9.		must be	_·		rs, the	minii	mum Hammi	ing distan	ce d _{min} in a block	
	(1)	t+1	(2)	t-2		(3)	2t-1	(4)	2t+1	
50.	Encr	ypt the Message	"HEL	LO MY DE	ARZ"	using	Transpositio	n Cipher	with	
		Key { Plain Text Cipher Te	t 24 xt 12	13 34				9		
	(1) (3)	HLLEO YM AE ELHL MDOY A			(2) (4)		LL ZYM RAI L DOMY ZA			
51.	oper		opera						is 10. Then 12 P the final value of	
	(1)	8	(2)	9		(3)	10	(4)	11	
52.	men		20 ns.	The time re	equire	d to a	ccess a page i		page in secondary memory is 15 ns.	
	(1)	105	(2)		1 0	(3)		(4)	78	
53.	on a		proba	bility that	no re	quest	s are made i		resource per hour, ites, when arrival e ^{–20}	
54.	then the	n. For CPUs havi I/O instructions p	ng exporivile ch one s ensu s ensu s ensu	plicit I/O in ged. In a Ce of the folloured by open ared by a hard during	struct CPU vowing rating ardwa	ions, s vith m is true systen re trap	such I/O problemory mapper for a CPU von troutines. p	tection is e ed I/O, t	O instructions in ensured by having here is no explicit ory mapped I/O?	
J-08	718				13				Paper-II	

47. In Challenge-Response authentication the claimant _____.

(2) Proves that she doesn't know the secret

Proves that she knows the secret without revealing it

55.	Whi	ch UNIX/Linux	command is 1	used to ma	ake all	l files and	l sub-director	ies in the directory
		gs" executable l						2
	(1)	chmod− R a +	-x progs	(2)	chm	od – R 22	22 progs	
	(3)	chmod - X a +	x progs	(4)	chm	od $-X$ 22	22 progs	
56.	Whi	ch of the follow	ing statements	are true ?	>			
	(a)	External Fragreequest but the					total memory	space to satisfy a
	(b)	Memory Fragr	nentation can	be interna	l as w	ell as ext	ernal.	
	(c) Cod e	One solution te:	o external Fraș	gmentatio	n is co	mpaction	1.	
	(1)	(a) and (b) onl	У		(2)	(a) and	(c) only	
	(3)	(b) and (c) onl	-		(4)		•	
57.	_		•	called as	Page [Гable. Th	e essential co	ntents in each entry
	(1)	page table is/a Page Access ir						
	(2)	Virtual Page n						
	(2)	Page Frame nu						
	(4)	Both virtual pa		d Page Fr	ame N	Jumber		
	(=)	both virtual pe	ige number an	id Tage Th	anic i	Vuilibei		
58.	algo	rithm is implem	ge reference sta ented with 3 p	ring 1, 2, 3, page frame	, 2, 4, 2 es in 1	2,5,2,3,4. main mer	Suppose LRU nory. Then the	J page replacement he number of page
		ts are	. (2) 7		(2)	9	(4)	10
	(1)	5	(2) 7	* * * *	(3)	9	(4)	10
59.		sider the follow seconds :	ing three proce	esses with	the a	rrival tin	ne and CPU b	ourst time given in
	Proc	ess	Arrival Tim	e		Burst Ti	me	
	P_1		0			7		
	P_2		1			4		
	P_3		2			8		
		Gantt Chart for	preemptive SJ	JF schedul	ling al	gorithm	is	
		P ₁		P ₂	P ₃			
	(1)	0	7	13		 21		
						_		
	(2)	P_1		P_1	P_3			
	(-)	0 1	5	11		19		
		P_1	-	P_2	P ₃			
	(3)	0		11		 19		
		-						
	(4)	P ₂	P ₃	P ₁				
	` /	0 4	12			19		

	(1)	ROUND ROBIN	(2)	Preemptive SJF			
	(3)	Non-preemptive SJF	(4)	Preemptive pri	ority		
61.	In R	DBMS, which type of Jo	oin returns all ro	ws that satisfy th	ne join condi	tion ?	
	(1)	Inner Join	(2)	Outer Join			
	(3)	Semi Join	(4)	Anti Join			
62.		sider a relation book (tituming that no two book	* '		-		
		Select title					
		from book as B					
		where (select count (*)				
		from book as T					
		where T.price >	B.price) < 7				
	(1)	Titles of the six most e	xpensive books.				
	(2)	Title of the sixth most	expensive books	+.0			
	(3)	Titles of the seven mos	st expensive book	Ks.			
	(4)	Title of the seventh mo	ost expensive boo	oks.			
63.	In a	Hierachical database, a	hashing functio	n is used to loca	te the	·	
	(1)	Collision	(2)	Root			
	(3)	Foreign Key	(4)	Records			
64.	Rela	tions produced from E	- R Model will a	lways be in	·		
	(1)	1 NF (2)	2 NF	(3) 3 NF	(4)	4 NF	
65.	Con	sider the following sche	edules involving	two transactions			
		$r_1(X) ; r_1(Y) ; r_2(X) ; r_2(Y)$					
	-	$r_1(X)$; $r_2(X)$; $r_2(Y)$; $w_2($. =				
	_	ch one of the following		rect with respec	t to above?		
	(1)	Both S ₁ and S ₂ are cor	nflict serializable.				
	(2)	Both S_1 and S_2 are no					
	(3)	S_1 is conflict serializal			ble.		
	(4)	S_1 is not conflict seria	-				
J-08	718		15			p.	nos II
J-00	710		15			Pa	aper-II

60. In which of the following scheduling criteria, context switching will never take place?

66. For a database relation R(a, b, c, d) where the domains of a, b, c and d include only atomic values, and only the following functional dependencies and those that can be inferred from them hold:

 $a \rightarrow c$

 $b \rightarrow d$

The relation is in .

- (1) First normal form but not in second normal form
- (2) Second normal form but not in third normal form
- (3) Third normal form
- (4) BCNF
- 67. A many-to-one relationship exists between entity sets r_1 and r_2 . How will it be represented using functional depedencies if Pk(r) denotes the primary key attribute of relation r?
 - (1) $Pk(r_1) \rightarrow Pk(r_2)$
 - (2) $Pk(r_2) \rightarrow Pk(r_1)$
 - (3) $Pk(r_2) \rightarrow Pk(r_1)$ and $Pk(r_1) \rightarrow Pk(r_2)$
 - (4) $Pk(r_2) \rightarrow Pk(r_1)$ or $Pk(r_1) \rightarrow Pk(r_2)$
- **68.** Database systems that store each relation in a separate operating system file may use the operating system's authorization scheme, instead of defining a special scheme themselves. In this case, which of the following is **false**?
 - (1) The administrator enjoys more control on the grant option.
 - (2) It is difficult to differentiate among the update, delete and insert authorizations.
 - (3) Cannot store more than one relation in a file.
 - (4) Operations on the database are speeded up as the authorization procedure is carried out at the operating system level.
- **69.** Let $R_1(a, b, c)$ and $R_2(x, y, z)$ be two relations in which a is the foreign key of R_1 that refers to the primary key of R_2 . Consider following four options.
 - (a) Insert into R₁
- (b) Insert into R₂
- (c) Delete from R₁
- (d) Delete from R₂

Which of the following is correct about the referential integrity constraint with respect to above?

- (1) Operations (a) and (b) will cause violation.
- (2) Operations (b) and (c) will cause violation.
- (3) Operations (c) and (d) will cause violation.
- (4) Operations (d) and (a) will cause violation.

- 70. Consider a hash table of size seven, with starting index zero, and a hash function (7x+3) mod 4. Assuming the hash table is initially empty, which of the following is the contents of the table when the sequence 1, 3, 8, 10 is inserted into the table using closed hashing? Here "__" denotes an empty location in the table.
 - (1) 3, 10, 1, 8, __ , __ , __
 - (2) 1, 3, 8, 10, __ , __ ,
 - (3) 1, __, 3, __, 8, __, 10
 - (4) 3, 10, __ , __ , 8, __ , __
- 71. In Artificial Intelligence (AI), an environment is uncertain if it is ______
 - (1) Not fully observable and not deterministic
 - (2) Not fully observable or not deterministic
 - (3) Fully observable but not deterministic
 - (4) Not fully observable but deterministic
- 72. In Artificial Intelligence (AI), a simple reflex agent selects actions on the basis of______
 - (1) current percept, completely ignoring rest of the percept history.
 - (2) rest of the percept history, completely ignoring current percept.
 - (3) both current percept and complete percept history.
 - (4) both current percept and just previous percept.
- 73. In heuristic search algorithms in Artificial Intelligence (AI), if a collection of admissible heuristics h_1 h_m is available for a problem and none of them dominates any of the others, which should we choose ?
 - (1) $h(n) = max\{h_1(n),...,h_m(n)\}$
 - (2) $h(n) = \min\{h_1(n),...,h_m(n)\}$
 - (3) $h(n) = avg\{h_1(n),...,h_m(n)\}$
 - (4) $h(n) = sum\{h_1(n),...,h_m(n)\}$
- **74.** Consider following sentences regarding A*, an informed search strategy in Artificial Intelligence (AI).
 - (a) A^* expands all nodes with $f(n) < C^*$.
 - (b) A^* expands no nodes with $f(n) \ge C^*$.
 - (c) Pruning is integral to A*.

Here, C* is the cost of the optimal solution path.

Which of the following is correct with respect to the above statements?

- (1) Both statement (a) and statement (b) are true.
- (2) Both statement (a) and statement (c) are true.
- (3) Both statement (b) and statement (c) are true.
- (4) All the statements (a), (b) and (c) are true.

75. Consider a vocabulary with only four propositions A, B, C and D. How many models are there for the following sentence?

 $B \lor C$

- (1) 10
- (2) 12
- (3) 15
- (4) 16

- **76.** Consider the following statements:
 - (a) False \models True
 - (b) If $\alpha \models (\beta \land \gamma)$ then $\alpha \models \beta$ and $\alpha \models \gamma$.

Which of the following is correct with respect to the above statements?

- (1) Both statement (a) and statement (b) are false.
- (2) Statement (a) is true but statement (b) is false.
- (3) Statement (a) is false but statement (b) is true.
- (4) Both statement (a) and statement (b) are true.
- 77. Consider the following English sentence:

"Agra and Gwalior are both in India".

A student has written a logical sentence for the above English sentence in First-Order Logic using predicate In(x, y), which means x is in y, as follows:

In(Agra, India) ∨ In(Gwalior, India)

Which one of the following is correct with respect to the above logical sentence?

- (1) It is syntactically valid but does not express the meaning of the English sentence.
- (2) It is syntactically valid and expresses the meaning of the English sentence also.
- (3) It is syntactically invalid but expresses the meaning of the English sentence.
- (4) It is syntactically invalid and does not express the meaning of the English sentence.
- **78.** Consider the following two sentences:
 - (a) The planning graph data structure can be used to give a better heuristic for a planning problem.
 - (b) Dropping negative effects from every action schema in a planning problem results in a relaxed problem.

Which of the following is correct with respect to the above sentences?

- (1) Both sentence (a) and sentence (b) are false.
- (2) Both sentence (a) and sentence (b) are true.
- (3) Sentence (a) is true but sentence (b) is false.
- (4) Sentence (a) is false but sentence (b) is true.

- 79. A knowledge base contains just one sentence, $\exists x$ AsHighAs (x, Everest). Consider the following two sentences obtained after applying existential instantiation.
 - (a) AsHighAs (Everest, Everest)
 - (b) AsHighAs (Kilimanjaro, Everest)

Which of the following is correct with respect to the above sentences?

- (1) Both sentence (a) and sentence (b) are sound conclusions.
- (2) Both sentence (a) and sentence (b) are unsound conclusions.
- (3) Sentence (a) is sound but sentence (b) is unsound.
- (4) Sentence (a) is unsound but sentence (b) is sound.
- **80.** Consider the set of all possible five-card poker hands dealt fairly from a standard deck of fifty-two cards. How many atomic events are there in the joint probability distribution?
 - (1) 2, 598, 960
- (2) 3, 468, 960
- (3) 3, 958, 590
- (4) 2, 645, 590
- **81.** E is the number of edges in the graph and f is maximum flow in the graph. When the capacities are integers, the runtime of Ford-Fulberson algorithm is bounded by :
 - (1) O(E*f)

(2) O (E^2*f)

(3) O $(E*f^2)$

- (4) O (E^2*f^2)
- 82. Which of the following statements is false about convex minimization problem?
 - (1) If a local minimum exists, then it is a global minimum
 - (2) The set of all global minima is convex set
 - (3) The set of all global minima is concave set
 - (4) For each strictly convex function, if the function has a minimum, then the minimum is unique
- **83.** The following LPP

Maximize
$$z = 100x_1 + 2x_2 + 5x_3$$

Subject to

$$14x_1 + x_2 - 6x_3 + 3x_4 = 7$$

$$32x_1 + x_2 - 12x_3 \le 10$$

$$3x_1 - x_2 - x_3 \le 0$$

$$x_1, x_2, x_3, x_4 \ge 0$$

has

- (1) Solution: $x_1 = 100$, $x_2 = 0$, $x_3 = 0$ (2)
- (2) Unbounded solution

(3) No solution

(4) Solution: $x_1 = 50$, $x_2 = 70$, $x_3 = 60$

- Digital data received from a sensor can fill up 0 to 32 buffers. Let the sample space be $S = \{0, 1, 2, \dots, 32\}$ where the sample j denote that j of the buffers are full and $p(i) = \frac{1}{561} (33-i)$. Let A denote the event that the even number of buffers are full. Then p(A) is:
 - (1) 0.515
- (2)0.785
- (3)0.758
- (4) 0.485

85. The equivalence of

 $\neg \exists x Q(x)$ is:

- (1) $\exists x \neg Q(x)$
- (2) $\forall x \neg Q(x)$ (3) $\neg \exists x \neg Q(x)$

If $A_i = \{-i, ..., -2, -1, 0, 1, 2, ..., i\}$

then $\bigcup_{i=1}^{\infty} A_i$ is:

- (1) Z
- (2)
- (3) R
- Match the following in **List I** and **List II**, for a function *f* : 87.

List - I

List - II

- $\forall x \forall y (f(x) = f(y) \rightarrow x = y)$ (a)
- Constant (i)
- $\forall y \exists x (f(x) = y)$
- Injective

 $\forall x f(x) = k$ (c)

Surjective

Code:

- (a) (b)
- (1) (i) (ii)
- (2) (iii) (ii)
- (i) (3) (ii)
- (4) (ii) (iii)
- 88. Which of the relations on {0, 1, 2, 3} is an equivalence relation?
 - { (0, 0) (0, 2) (2, 0) (2, 2) (2, 3) (3, 2) (3, 3) }
 - { (0, 0) (1, 1) (2, 2) (3, 3) } (2)
 - { (0, 0) (0, 1) (0, 2) (1, 0) (1, 1) (1, 2) (2, 0) }
 - $\{ (0, 0) (0, 2) (2, 3) (1, 1) (2, 2) \}$

- **89.** Which of the following is an equivalence relation on the set of all functions from Z to Z?
 - (1) $\{ (f, g) \mid f(x) g(x) = 1 \forall x \in Z \}$
 - (2) { $(f, g) | f(0) = g(0) \text{ or } f(1) = g(1) }$
 - (3) $\{ (f, g) \mid f(0) = g(1) \text{ and } f(1) = g(0) \}$
 - (4) $\{ (f, g) \mid f(x) g(x) = k \text{ for some } k \in Z \}$
- **90.** Which of the following statements is **true**?
 - (1) (Z, \leq) is not totally ordered
 - (2) The set inclusion relation \subseteq is a partial ordering on the power set of a set S
 - (3) (Z, \neq) is a poset
 - (4) The directed graph \xrightarrow{a} is not a partial order
- **91.** CMOS is a Computer Chip on the motherboard, which is:
 - (1) RAM

(2) ROM

(3) EPROM

- (4) Auxillary storage
- 92. In RS flip-flop, the output of the flip-flop at time (t+1) is same as the output at time t, after the occurance of a clock pulse if:
 - (1) S = R = 1

(2) S=0, R=1

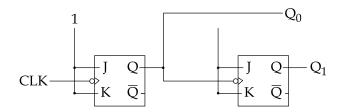
(3) S=1, R=0

- (4) S = R = 0
- 93. Match the terms in List I with the options given in List II:

List - I

List - II

(a) Decoder


- (i) 1 line to 2^n lines
- (b) Multiplexer
- (ii) n lines to 2ⁿ lines
- (c) De multiplexer
- (iii) 2^n lines to 1 line
- (iv) 2^n lines to 2^{n-1} lines

Code:

- (a) (b) (c)
- (1) (ii) (i) (iii)
- (2) (ii) (iii) (i)
- (3) (ii) (i) (iv)
- (4) (iv) (ii) (i)

94. What does the following logic diagram represent?

- (1) Synchronous Counter
- (2) Ripple Counter
- (3) Combinational Circuit
- (4) Mod 2 Counter

95. The hexadecimal equivalent of the binary integer number 110101101 is:

- (1) D24
- (2) 1 B D
- (3) 1 A E
- (4) 1 A D

96. Perform the following operation for the binary equivalent of the decimal numbers $(-14)_{10} + (-15)_{10}$

The solution in 8 bit representation is :

(1) 11100011

(2) 00011101

(3) 10011101

(4) 11110011

97. Match the items in List - I and List - II:

List - I

List - II

- (a) Interrupts which can be delayed when a much highest (i) Normal priority interrupt has occurred
- (b) Unplanned interrupts which occur while executing a program
- (ii) Synchronous
- (c) Source of interrupt is in phase with the system clock
- (iii) Maskable
- (iv) Exception

Code:

- (a) (b) (c)
- (1) (ii) (i) (iv)
- (2) (ii) (iv) (iii)
- (3) (iii) (i) (ii)
- (4) (iii) (iv) (ii)

- Which of the following mapping is not used for mapping process in cache memory?
 - (1) Associative mapping
- (2) Direct mapping
- Set-Associative mapping (3)
- Segmented page mapping (4)
- 99. Simplify the following using K-map:

$$F(A, B, C, D) = \Sigma(0, 1, 2, 8, 9, 12, 13)$$

$$d(A, B, C, D) = \Sigma(10, 11, 14, 15)$$

d stands for don't care condition.

 $A + \overline{B} \overline{D} + BC$ (1)

(2) $A + \overline{B} \overline{D} + \overline{B} \overline{C}$

 $\overline{A} + \overline{B} \overline{C}$ (3)

- $\overline{A} + \overline{B} \overline{C} + \overline{B} \overline{D}$
- 100. In 8085 microprocessor, what is the output of following program?

LDA 8000H

MVI B, 30H

ADD B

STA 8001H

- Read a number from input port and store it in memory (1)
- Read a number from input device with address 8000H and store it in memory at location (2)8001H
- Read a number from memory at location 8000H and store it in memory location 8001H (3)
- Load A with data from input device with address 8000H and display it on the output (4) device with address 8001H

Space For Rough Work

