<table>
<thead>
<tr>
<th>2P0731K (DAY-2, FIRST SESSION)</th>
</tr>
</thead>
<tbody>
<tr>
<td>P</td>
</tr>
<tr>
<td>TIME</td>
</tr>
<tr>
<td>10.30</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Q</th>
<th>P</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>80</td>
<td>70</td>
<td>60</td>
<td>60</td>
</tr>
</tbody>
</table>

1. **Q1**: Choose the correct symbol for the given context. Must be completed by 10:30 AM.
2. **Q2**: Identify the symbols that do not belong in the given sequence. Must be completed by 11:50 AM.
3. **Q3**: Select the correct method for solving the problem. Must be completed by 10:40 AM.
4. **Q4**: Match the symbols with their corresponding meanings. Must be completed by 11:30 AM.

<table>
<thead>
<tr>
<th>TABLE 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>CORRECT METHOD</td>
</tr>
<tr>
<td>A ● C D</td>
</tr>
<tr>
<td>B C D A</td>
</tr>
</tbody>
</table>

5. **Q5**: Complete the given sequence using the correct symbols. Must be completed by 11:40 AM.
6. **Q6**: Determine the correct symbol to fill in the blank. Must be completed by 11:50 AM.
7. **Q7**: Complete the given sequence using the correct symbols. Must be submitted by 12:00 PM.
8. **Q8**: Complete the given sequence using the correct symbols. Must be submitted by 12:10 PM.
9. **Q9**: Complete the given sequence using the correct symbols. Must be submitted by 12:20 PM.

Candidate's Copy

Candidate

Date

Signature

Supervisor

Date

Signature
1. In a permanent magnet at room temperature
 (A) Domains are all perfectly aligned.
 (B) Magnetic moment of each molecule is zero.
 (C) The individual molecules have non-zero magnetic moment which are all perfectly aligned.
 (D) Domains are partially aligned.

2. A rod of length 2 m slides with a speed of 5 ms\(^{-1}\) on a rectangular conducting frame as shown in figure. There exists a uniform magnetic field of 0.04 T perpendicular to the plane of the figure. If the resistance of the rod is 3 Ω. The current through the rod is

 \[
 \begin{align*}
 & \times \quad \times \quad \times \quad \times \quad \times \\
 & \times \quad \times \quad \times \quad \times \quad \times \\
 & \times \quad \times \quad \times \quad \times \quad \times \\
 \end{align*}
 \]

 (A) 1.33 A (B) 75 mA (C) 133 mA (D) 0.75 A

3. The ratio of magnetic field at the centre of a current carrying circular coil to its magnetic moment is ‘x’. If the current and the radius both are doubled. The new ratio will become

 (A) \(\frac{x}{8}\) (B) 2x (C) 4x (D) \(\frac{x}{4}\)

4. In the given circuit the peak voltages across C, L and R are 30 V, 110 V and 60 V respectively. The rms value of the applied voltage is

 \[
 \begin{align*}
 & C \quad L \quad R \\
 & 30 \text{ V} \quad 110 \text{ V} \quad 60 \text{ V} \\
 \end{align*}
 \]

 (A) 141 V (B) 100 V (C) 200 V (D) 70.7 V

5. The power factor of R-L circuit is \(\frac{1}{\sqrt{3}}\).

 If the inductive reactance is 2 Ω. The value of resistance is

 (A) \(\frac{1}{\sqrt{2}}\) Ω (B) 2 Ω (C) \(\sqrt{2}\) Ω (D) 0.5 Ω

6. In the given circuit, the resonant frequency is

 \[
 \begin{align*}
 & 0.5 \text{ mH} \quad 20 \mu\text{F} \\
 \end{align*}
 \]

 (A) 15910 Hz (B) 15.92 Hz (C) 159.2 Hz (D) 1592 Hz

7. The current in a coil of inductance 0.2 H changes from 5 A to 2 A in 0.5 sec. The magnitude of the average induced emf in the coil is

 (A) 0.3 V (B) 0.6 V (C) 1.2 V (D) 30 V

Space For Rough Work
8. An object approaches a convergent lens from the left of the lens with a uniform speed 5 m/s and stops at the focus, the image
(A) moves towards the lens with a non-uniform acceleration.
(B) moves away from the lens with an uniform speed 5 m/s.
(C) moves away from the lens with an uniform acceleration.
(D) moves away from the lens with a non-uniform acceleration.

9. The refracting angle of a prism is A and the refractive index of material of prism is $\cot \frac{A}{2}$. The angle of minimum deviation is
(A) $180^\circ - 2A$
(B) $180^\circ - 3A$
(C) $180^\circ + 2A$
(D) $90^\circ - A$

10. A light beam of intensity 20 W/cm2 is incident normally on a perfectly reflecting surface of sides 25 cm \times 15 cm. The momentum imparted to the surface by the light per second is
(A) 1.2×10^{-5} kg ms$^{-1}$
(B) 2×10^{-5} kg ms$^{-1}$
(C) 1×10^{-5} kg ms$^{-1}$
(D) 5×10^{-5} kg ms$^{-1}$

11. Three polaroid sheets P_1, P_2 and P_3 are kept parallel to each other such that the angle between pass axes of P_1 and P_2 is 45° and that between P_2 and P_3 is 45°. If unpolarised beam of light of intensity 128 Wm$^{-2}$ is incident on P_1. What is the intensity of light coming out of P_3?
(A) 64 Wm$^{-2}$
(B) 128 Wm$^{-2}$
(C) 0
(D) 16 Wm$^{-2}$

12. Two poles are separated by a distance of 3.14 m. The resolving power of human eye is 1 minute of an arc. The maximum distance from which he can identify the two poles distinctly is
(A) 376 m
(B) 10.8 km
(C) 5.4 km
(D) 188 m

13. The following figure shows a beam of light converging at point P. When a concave lens of focal length 16 cm is introduced in the path of the beam at a place shown by dotted line such that OP becomes the axis of the lens, the beam converges at a distance x from the lens. The value of x will be equal to

(A) 48 cm
(B) 12 cm
(C) 24 cm
(D) 36 cm
14. The de-Broglie wavelength associated with electron of hydrogen atom in this ground state is
(A) 10 Å (B) 0.3 Å (C) 3.3 Å (D) 6.26 Å

15. The following graph represents the variation of photo current with anode potential for a metal surface. Here I₁, I₂ and I₃ represents intensities and γ₁, γ₂, γ₃ represent frequency for curves 1, 2 and 3 respectively, then

(A) γ₂ = γ₃ and I₁ = I₃
(B) γ₁ = γ₂ and I₁ ≠ I₂
(C) γ₁ = γ₃ and I₁ = I₃
(D) γ₁ = γ₂ and I₁ = I₂

16. In Young’s Double Slit Experiment, the distance between the slits and the screen is 1.2 m and the distance between the two slits is 2.4 mm. If a thin transparent mica sheet of thickness 1 μm and R.I. 1.5 is introduced between one of the interfering beams, the shift in the position of central bright fringe is
(A) 0.25 mm (B) 2 mm (C) 0.5 mm (D) 0.125 mm

17. Angular momentum of an electron in hydrogen atom is \(\frac{3h}{2\pi} \) (h is the Planck’s constant). The K.E. of the electron is
(A) 6.8 eV (B) 4.35 eV (C) 1.51 eV (D) 3.4 eV

18. A beam of fast moving alpha particles were directed towards a thin film of gold. The parts A, B and C of the transmitted and reflected beams corresponding to the incident parts A, B and C of the beam are shown in the adjoining diagram. The number of alpha particles in

(A) C' will be minimum and in B' maximum
(B) B' will be minimum and in C' maximum
(C) A' will be maximum and in C' minimum
(D) A' will be minimum and in B' maximum

19. The period of revolution of an electron revolving in nth orbit of H-atom is proportional to
(A) Independent of n
(B) \(n^2 \)
(C) \(\frac{1}{n} \)
(D) \(n^3 \)
20. During a β^- decay

(A) A proton in the nucleus decays emitting an electron.
(B) an atomic electron is ejected.
(C) an electron which is already present within the nucleus is ejected.
(D) A neutron in the nucleus decays emitting an electron.

21. A radio-active element has half-life of 15 years. What is the fraction that will decay in 30 years?

(A) 0.85
(B) 0.25
(C) 0.5
(D) 0.75

22. Two protons are kept at a separation of 10 nm. Let F_n and F_e be the nuclear force and the electromagnetic force between them

(A) F_e and F_n differ only slightly
(B) $F_e = F_n$
(C) $F_e >> F_n$
(D) $F_e << F_n$

23. In the following circuit what are P and Q:

(A) $P = 1$, $Q = 1$
(B) $P = 1$, $Q = 0$
(C) $P = 0$, $Q = 1$
(D) $P = 0$, $Q = 0$

24. A positive hole in a semiconductor is

(A) an artificially created particle.
(B) an anti-particle of electron.
(C) a vacancy created when an electron leaves a covalent bond.
(D) absence of free electrons.

25. A 220 V A.C. supply is connected between points A and B as shown in figure what will be the potential difference V across the capacitor?

(A) $220\sqrt{2}$ V
(B) 220 V
(C) 110 V
(D) 0

Space For Rough Work
26. Two long straight parallel wires are a distance 2d apart. They carry steady equal currents flowing out of the plane of the paper. The variation of magnetic field B along the line xx' is given by

(A) ![Diagram A]

(B) ![Diagram B]

(C) ![Diagram C]

(D) ![Diagram D]

27. At a metro station, a girl walks up a stationary escalator in 20 sec. If she remains stationary on the escalator, then the escalator take her up in 30 sec. The time taken by her to walk up on the moving escalator will be

(A) 10 sec (B) 25 sec (C) 60 sec (D) 12 sec

28. Rain is falling vertically with a speed of 12 ms⁻¹. A woman rides a bicycle with a speed of 12 ms⁻¹ in east to west direction. What is the direction in which she should hold her umbrella?

(A) 45° towards West (B) 30° towards East (C) 45° towards East (D) 30° towards West

29. A cylindrical wire has a mass \((0.3 \pm 0.003)g\), radius \((0.5 \pm 0.005) mm\) and length \((6 \pm 0.06) cm\). The maximum percentage error in the measurement of its density is

(A) 4 (B) 1 (C) 2 (D) 3

Space For Rough Work
30. A body is initially at rest. It undergoes one-dimensional motion with constant acceleration. The power delivered to it at time ‘t’ is proportional to

(A) \(t^2 \) \hspace{1cm} (B) \(t^{1/2} \)

(C) \(t \) \hspace{1cm} (D) \(t^{3/2} \)

31. A thin uniform rectangular plate of mass 2 kg is placed in X-Y plane as shown in figure. The moment of inertia about x-axis is \(I_x = 0.2 \text{ kg m}^2 \) and the moment of inertia about y-axis is \(I_y = 0.3 \text{ kg m}^2 \). The radius of gyration of the plate about the axis passing through O and perpendicular to the plane of the plate is

![Diagram of a rectangular plate](image)

(A) 31.6 cm \hspace{1cm} (B) 50 cm

(C) 5 cm \hspace{1cm} (D) 38.7 cm

32. One end of a string of length ‘\(l \)’ is connected to a particle of mass ‘m’ and the other to a small peg on a smooth horizontal table. If the particle moves in a circle with speed ‘\(v \)’, the net force on the particle (directed towards the centre) is: (T is the tension in the string)

(A) 0 \hspace{1cm} (B) T

(C) \(T - \frac{mv^2}{l} \) \hspace{1cm} (D) \(T + \frac{mv^2}{l} \)

33. Young’s modulus of a perfect rigid body is

(A) between zero and unity \hspace{1cm} (B) zero

(C) unity \hspace{1cm} (D) infinity

34. A wheel starting from rest gains an angular velocity of 10 rad/s after uniformly accelerated for 5 sec. The total angle through which it has turned is

(A) 50 \(\pi \) rad about a vertical axis \hspace{1cm} (B) 25 rad

(C) 100 rad \hspace{1cm} (D) 25 \(\pi \) rad

35. Iceberg floats in water with part of it submerged. What is the fraction of the volume of iceberg submerged if the density of ice is \(\rho_i = 0.917 \text{ g cm}^{-3} \)?

(A) 0 \hspace{1cm} (B) 0.917

(C) 1 \hspace{1cm} (D) 0.458

36. The value of acceleration due to gravity at a height of 10 km from the surface of earth is \(x \). At what depth inside the earth is the value of the acceleration due to gravity has the same value \(x \)?

(A) 15 km \hspace{1cm} (B) 5 km

(C) 20 km \hspace{1cm} (D) 10 km
48. A hot filament liberates an electron with zero initial velocity. The anode potential is 1200 V. The speed of the electron when it strikes the anode is
(A) 2.5×10^8 ms$^{-1}$
(B) 1.5×10^5 ms$^{-1}$
(C) 2.5×10^6 ms$^{-1}$
(D) 2.1×10^7 ms$^{-1}$

49. A metal rod of length 10 cm and a rectangular cross-section of 1 cm $\times \frac{1}{2}$ cm is connected to a battery across opposite faces. The resistance will be
(A) same irrespective of the three faces.
(B) maximum when the battery is connected across 1 cm $\times \frac{1}{2}$ cm faces.
(C) maximum when the battery is connected across 10 cm $\times \frac{1}{2}$ cm faces.
(D) maximum when the battery is connected across 10 cm \times 1 cm faces.

50. A car has a fresh storage battery of e.m.f. 12 V and internal resistance 2×10^{-2} Ω. If the starter motor draws a current of 80 A. Then the terminal voltage when the starter is on is
(A) 9.3 V
(B) 12 V
(C) 8.4 V
(D) 10.4 V

51. When a soap bubble is charged?
(A) Its radius may increase or decrease.
(B) Its radius increases.
(C) Its radius decreases.
(D) The radius remains the same.

52. The colour code for a carbon resistor of resistance 0.28 k$\Omega \pm 10\%$ is
(A) Red, Green, Silver
(B) Red, Grey, Brown, Silver
(C) Red, Green, Brown, Silver
(D) Red, Grey, Silver, Silver

53. Each resistance in the given cubical network has resistance of 1 Ω and equivalent resistance between A and B is

(A) $\frac{12}{5} \Omega$
(B) $\frac{5}{6} \Omega$
(C) $\frac{6}{5} \Omega$
(D) $\frac{5}{12} \Omega$

54. A potentiometer has a uniform wire of length 5 m. A battery of emf 10 V and negligible internal resistance is connected between its ends. A secondary cell connected to the circuit gives balancing length at 200 cm. The emf of the secondary cell is
(A) 8 V
(B) 4 V
(C) 6 V
(D) 2 V
55. In the given figure, the magnetic field at ‘O’.

\[I \quad r \]

\[\frac{3}{8} \frac{\mu_0 I}{r} \quad \frac{\mu_0 I}{4 \pi r} \quad \frac{3}{4} \frac{\mu_0 I}{r} + \frac{\mu_0 I}{4 \pi r} \]

(A) \[\frac{\mu_0 I}{8} \quad \frac{\mu_0 I}{4 \pi r} \quad \frac{\mu_0 I}{10} \]

(B) \[\frac{\mu_0 I}{3} \quad \frac{\mu_0 I}{4 \pi r} \quad \frac{\mu_0 I}{8} \]

(C) \[\frac{\mu_0 I}{10} \quad \frac{\mu_0 I}{4 \pi r} \quad \frac{\mu_0 I}{8} + \frac{\mu_0 I}{4 \pi r} \]

56. The magnetic field at the origin due to a current element \(\mathbf{i} d \mathbf{l} \) placed at a point with vector position \(\mathbf{r} \) is

\[\frac{\mu_0 \mathbf{i}}{4 \pi} \quad \frac{\mu_0 \mathbf{i}}{4 \pi r} \quad \frac{\mu_0 \mathbf{i}}{4 \pi r^2} \]

(A) \[\frac{\mu_0 \mathbf{i}}{4 \pi} \quad \frac{\mu_0 \mathbf{i}}{4 \pi r} \quad \frac{\mu_0 \mathbf{i}}{4 \pi r^2} \]

(B) \[\frac{\mu_0 \mathbf{i}}{4 \pi} \quad \frac{\mu_0 \mathbf{i}}{4 \pi r} \quad \frac{\mu_0 \mathbf{i}}{4 \pi r^2} \]

(C) \[\frac{\mu_0 \mathbf{i}}{4 \pi} \quad \frac{\mu_0 \mathbf{i}}{4 \pi r} \quad \frac{\mu_0 \mathbf{i}}{4 \pi r^2} \]

(D) \[\frac{\mu_0 \mathbf{i}}{4 \pi} \quad \frac{\mu_0 \mathbf{i}}{4 \pi r} \quad \frac{\mu_0 \mathbf{i}}{4 \pi r^2} \]

57. I-V characteristic of a copper wire of length L and area of cross-section A is shown in figure. The slope of the curve becomes

\[O \quad V \]

(A) Less if the length of the wire is increased.

(B) More if experiment is performed at higher temperature.

(C) More if a wire of steel of same dimension is used.

(D) Less if the area of the wire is increased.

58. A cyclotron is used to accelerate protons \(^1 \text{H} \), Deuterons \(^2 \text{H} \) and \(\alpha \)-particles \(^2 \text{He} \). While exiting under similar conditions, the minimum K.E. is gained by

(A) same for all

(B) \(\alpha \)-particle

(C) proton

(D) deuteron

59. A paramagnetic sample shows a net magnetization of 8 Am\(^{-1} \) when placed in an external magnetic field of 0.6 T at a temperature of 4 K. When the same sample is placed in an external magnetic field of 0.2 T at a temperature of 16 K. The magnetization will be

(A) 2.4 Am\(^{-1} \)

(B) \(\frac{32}{3} \) Am\(^{-1} \)

(C) \(\frac{2}{3} \) Am\(^{-1} \)

(D) 6 Am\(^{-1} \)

60. A long cylindrical wire of radius R carries a uniform current I flowing through it. The variation of magnetic field with distance ‘r’ from the axis of the wire is shown by

\[I \quad V \]

(A) \[I \quad V \]

(B) \[I \quad V \]

(C) \[I \quad V \]

(D) \[I \quad V \]