Exam

Exam

GATE: GEOLOGY and GEOPHYSICS Syllabus

GG Geology and Geophysics

Common Section

Earth and Planetary system - size, shape, internal structure and composition of the

earth; concept of isostasy; elements of seismology – body and surface waves,

propagation of body waves in the earth’s interior; Gravitational field of the Earth;

geomagnetism and paleomagnetism; continental drift; plate tectonics –

relationship with earthquakes, volcanism and mountain building; continental and

oceanic crust – composition, structure and thickness.

Weathering and soil formation; landforms created by river, wind, glacier, ocean

and volcanoes. Basic structural geology - stress, strain and material response; brittle

and ductile deformation; nomenclature and classification of folds and faults.

Crystallography – basic crystal symmetry and concept of point groups. Mineralogy

– silicate crystal structure and determinative mineralogy of common rock forming

minerals. Petrology – mineralogy and classification of common igneous,

sedimentary and metamorphic rocks. Geological time scale - geochronology and

absolute time. Stratigraphic principles; major stratigraphic divisions of India.

Geological and geographical distribution of mineral, coal and petroleum resources

of India.

Introduction to remote sensing. Engineering properties of rocks and soils. Ground

water geology.

Principles and applications of gravity, magnetic, electrical, electromagnetic,

seismic and radiometric methods of prospecting for oil, mineral and ground water;

introductory well logging.

Part – A: Geology

Geomorphic processes and agents; development and evolution of landforms;

slope and drainage; processes in deep oceanic and near-shore regions;

quantitative and applied geomorphology.

Mechanism of rock deformation; primary and secondary structures; geometry and

genesis of folds, faults, joints and unconformities; cleavage, schistosity and lineation;

methods of projection; tectonites and their significance; shear zones; superposed

folding; basement-cover relationship.

Crystallography - symmetry, forms and twinning; crystal chemistry; optical

mineralogy, classification of minerals, diagnostic physical and optical properties of

rock - forming minerals.

Cosmic abundance of elements; meteorites; geochemical evolution of the earth;

geochemical cycles; distribution of major, minor and trace elements in crust and

mantle; elements of geochemical thermodynamics; isotope geochemistry;

geochemistry of waters including solution equilibria and water-rock interaction.

Igneous rocks – classification, forms and textures; magmatic differentiation; binary

and ternary phase diagrams; major and trace elements as monitors of partial

melting and magma evolutionary processes. Sedimentary rocks – texture and

structure; sedimentary processes and environments, sedimentary facies,

provencance and basin analysis. Metamorphic rocks – structures and textures.

Physico-chemical conditions of metamorphism and concept of metamorphic

facies, grade and baric types; metamorphism of pelitic, mafic and impure

carbonate rocks; role of fluids in metamorphism; metamorphic P-T-t paths and their

tectonic significance. Association of igneous, sedimentary and metamorphic rocks

with tectonic setting. Igneous and metamorphic provinces and important

sedimentary basins of India.

Morphology, classification and geological significance of important invertebrates,

vertebrates, plant fossils and microfossils.

Principles of Stratigraphy and concepts of correlation – lithostratigraphy,

biostratigraphy and chronostratigraphy. Indian stratigraphy – Precambrian and

Phanerozoic. Overview of Himalayan Geology.

Ore-mineralogy and optical properties of ore minerals; ore forming processes vis-à-

vis ore-rock association (magmatic, hydrothermal, sedimentary, supergene and

metamorphogenic ores); fluid inclusions as an ore genetic tool. Coal and

petroleum geology; marine mineral resources. Prospecting and exploration of

economic mineral deposits - sampling, ore reserve estimation, geostatistics, mining

methods. Ore dressing and mineral economics. Origin and distribution of mineral,

fossil and nuclear fuel deposits in India.

Engineering properties of rocks and soils; rocks as construction materials; role of

geology in the construction of engineering structures including dams, tunnels and

excavation sites; natural hazards. Ground water geology – exploration, well

hydraulics and water quality. Basic principles of remote sensing – energy sources

and radiation principles, atmospheric absorption, interaction of energy with earth’s

surface, aerial-photo interpretation, multispectral remote sensing in visible, infrared,

thermal IR and microwave regions, digital processing of satellite images. GIS – basic

concepts, raster and vector mode operations.

Part - B: Geophysics

The earth as a planet; different motions of the earth; gravity field of the earth,

Clairaut’s theorem, size and shape of earth; geomagnetic field, paleomagnetism;

Geothermics and heat flow; seismology and interior of the earth; variation of

density, velocity, pressure, temperature, electrical and magnetic properties of the

earth; earthquakes-causes and measurements, magnitude and intensity, focal

mechanisms, earthquake quantification, source characteristics, seismotectonics

and seismic hazards; digital seismographs,

Scalar and vector potential fields; Laplace, Maxwell and Helmholtz equations for

solution of different types of boundary value problems in Cartesian, cylindrical and

spherical polar coordinates; Green’s theorem; Image theory; integral equations in

potential theory; Eikonal equation and Ray theory.

Absolute and relative gravity measurements; Gravimeters, Land, airborne,

shipborne and bore-hole gravity surveys; various corrections for gravity data

reduction – free air, Bouguer and isostatic anomalies; density estimates of rocks;

regional and residual gravity separation; principle of equivalent stratum; data

enhancement techniques, upward and downward continuation; derivative maps,

wavelength filtering; preparation and analysis of gravity maps; gravity anomalies

and their interpretation – anomalies due to geometrical and irregular shaped

bodies, depth rules, calculation of mass.

– Elements of Earth’s magnetic field, units of measurement, magnetic susceptibility

of rocks and measurements, magnetometers, Land, airborne and marine magnetic

surveys, Various corrections applied to magnetic data, IGRF, Reduction to Pole

transformation, Poisson’s relation of gravity and magnetic potential field,

preparation of magnetic maps, upward and downward continuation, magnetic

anomalies-geometrical shaped bodies, depth estimates, Image processing

concepts in processing of magnetic anomaly maps; Interpretation of processed

magnetic anomaly data. Applications of gravity and magnetic methods for mineral

and oil exploration.

Conduction of electricity through rocks, electrical conductivities of metals, non-
metals, rock forming minerals and different rocks, concepts of D.C. resistivity

measurement, various electrode configurations for resistivity sounding and profiling,

application of filter theory, Type-curves over multi-layered structures, Dar-Zarrouck

parameters, reduction of layers, coefficient of anisotropy, interpretation of resistivity

field data, equivalence and suppression, self-potential and its origin, field

measurement, Induced polarization, time and frequency domain IP

measurements; interpretation and applications of IP, ground-water exploration,

mineral exploration, environmental and engineering applications.

Basic concept of EM induction in the earth, Skin-depth, elliptic polarization, inphase

and quadrature components, Various EM methods, measurements in different

source-receiver configurations,. Earth’s natural electromagnetic field, tellurics,

magneto-tellurics; geomagnetic depth sounding principles, electromagnetic

profiling, Time domain EM method, EM scale modeling, processing of EM data and

interpretation. Geological applications including groundwater, mineral and

hydrocarbon exploration.

Seismic methods of prospecting; Elastic properties of earth materials; Reflection,

refraction and CDP surveys; land and marine seismic sources, generation and

propagation of elastic waves, velocity – depth models, geophones, hydrophones,

recording instruments (DFS), digital formats, field layouts, seismic noises and noise

profile analysis, optimum geophone grouping, noise cancellation by shot and

geophone arrays, 2D and 3D seismic data acquisition, processing and

interpretation; CDP stacking charts, binning, filtering, dip-moveout, static and

dynamic corrections, Digital seismic data processing, seismic deconvolution and

migration methods, attribute analysis, bright and dim spots, seismic stratigraphy,

high resolution seismics, VSP, AVO. Reservoir geophysics.

Geophysical signal processing, sampling theorem, aliasing, Nyquist frequency,

Fourier series, periodic waveform, Fourier and Hilbert transform, Z-transform and

wavelet transform; power spectrum, delta function, auto correlation, cross

correlation, convolution, deconvolution, principles of digital filters, windows, poles

and zeros.

Principles and techniques of geophysical well-logging, SP, resistivity, induction,

gamma ray, neutron, density, sonic, temperature, dip meter, caliper, nuclear

magnetic, cement bond logging, micro-logs. Quantitative evaluation of formations

from well logs; well hydraulics and application of geophysical methods for

groundwater study; application of bore hole geophysics in ground water, mineral

and oil exploration.

Radioactive methods of prospecting and assaying of mineral (radioactive and non

radioactive) deposits, half-life, decay constant, radioactive equilibrium, G M

counter, scintillation detector, semiconductor devices, application of radiometric

for exploration, assaying and radioactive waste disposal.

Basic concepts of forward and inverse problems, Ill-posedness of inverse problems,

condition number, non-uniqueness and stability of solutions; L1, L2 and Lp norms,

overdetermined, underdetermined and mixed determined inverse problems, quasi-
linear and non-linear methods including Tikhonov’s regularization method, Singular

Value Decomposion, Backus-Gilbert method, simulated annealing, genetic

algorithms and artificial neural network.

Download Syllabus

Get Instant News Updates
Enable
x
Notification Settings X
Time Settings
Done
Clear Notification X
Do you want to clear all the notifications from your inbox?
Settings X