XL-H Chemistry

Section 1: Atomic Structure and Periodicity

Planck’s quantum theory, wave particle duality, uncertainty principle, quantum

mechanical model of hydrogen atom, electronic configuration of atoms and ions.

Periodic table and periodic properties: ionization energy, electron affinity,

electronegativity and atomic size.

Section 2: Structure and Bonding

Ionic and covalent bonding, MO and VB approaches for diatomic molecules,

VSEPR theory and shape of molecules, hybridization, resonance, dipole moment,

structure parameters such as bond length, bond angle and bond energy,

hydrogen bonding and van der Waals interactions. Ionic solids, ionic radii and

lattice energy (Born‐Haber cycle). HSAB principle.

Section 3: s, p and d Block Elements

Oxides, halides and hydrides of alkali, alkaline earth metals, B, Al, Si, N, P, and S.

General characteristics of 3d elements. Coordination complexes: valence bond

and crystal field theory, color, geometry, magnetic properties and isomerism.

Section 4: Chemical Equilibria

Colligative properties of solutions, ionic equilibria in solution, solubility product,

common ion effect, hydrolysis of salts, pH, buffer and their applications.

Equilibrium constants (Kc, Kp and Kx) for homogeneous reactions.

Section 5: Electrochemistry

Conductance, Kohlrausch law, cell potentials, emf, Nernst equation, Galvanic cells,

thermodynamic aspects and their applications.

Section 6: Reaction Kinetics

Rate constant, order of reaction, molecularity, activation energy, zero, first and

second order kinetics, catalysis and elementary enzyme reactions.

Section 7: Thermodynamics

First law, reversible and irreversible processes, internal energy, enthalpy, Kirchoff

equation, heat of reaction, Hess’s law, heat of formation. Second law, entropy,

free energy and work function. Gibbs‐Helmholtz equation, Clausius‐Clapeyron

equation, free energy change, equilibrium constant and Trouton’s rule. Third law of


Section 8: Structure-Reactivity Correlations and Organic Reaction Mechanisms

Acids and bases, electronic and steric effects, optical and geometrical isomerism,

tautomerism, conformers and concept of aromaticity. Elementary treatment of

SN1, SN2, E1 and E2 reactions, Hoffmann and Saytzeff rules, addition reactions,

Markownikoff rule and Kharash effect. Aromatic electrophilic substitutions,

orientation effect as exemplified by various functional groups. Diels‐Alder, Wittig

and hydroboration reactions. Identification of functional groups by chemical


Download Syllabus

Get Instant News Updates
Notification Settings X
Time Settings
Clear Notification X
Do you want to clear all the notifications from your inbox?
Settings X