1. A variable line \(\frac{x}{a} + \frac{y}{b} = 1 \) is such that \(a + b = 4 \). The locus of the midpoint of the portion of the line intercepted between the axes is
 1) \(x + y = 4 \)
 2) \(x + y = 8 \)
 3) \(x + y = 1 \)
 4) \(x + y = 2 \)

2. The point \((5, -7)\) lies outside the circle
 1) \(x^2 + y^2 - 8x = 0 \)
 2) \(x^2 + y^2 - 5x + 7y = 0 \)
 3) \(x^2 + y^2 - 5x + 7y - 1 = 0 \)
 4) \(x^2 + y^2 - 8x + 7y - 2 = 0 \)

3. If the circles \(x^2 + y^2 = 9 \) and \(x^2 + y^2 + 2\alpha x + 2y + 1 = 0 \) touch each other internally, then \(\alpha = \)
 1) \(\pm \frac{4}{3} \)
 2) \(1 \)
 3) \(\frac{4}{3} \)
 4) \(-\frac{4}{3} \)

4. The locus of the midpoints of the line joining the focus and any point on the parabola \(y^2 = 4ax \) is a parabola with the equation of directrix as
 1) \(x + a = 0 \)
 2) \(2x + a = 0 \)
 3) \(x = 0 \).
 4) \(x = \frac{a}{2} \)

5. The tangents drawn at the extremities of a focal chord of the parabola \(y^2 = 16x \)
 1) intersect on \(x = 0 \)
 2) intersect on the line \(x + 4 = 0 \)
 3) intersect at an angle of \(60^0 \)
 4) intersect at an angle of \(45^0 \)

(Space for Rough Work)
6. On the set \(Z \), of all integers \(*\) is defined by \(a * b = a + b - 5 \). If \(2 * (x * 3) = 5 \) then \(x = \)

1) 0
2) 3
3) 5
4) 10

7. Which of the following is false?
1) Addition is commutative in \(N \).
2) Multiplication is associative in \(N \).
3) If \(a * b = a^b \) for all \(a, b \in N \) then \(*\) is commutative in \(N \).
4) Addition is associative in \(N \).

8. If \(\vec{a} \cdot \vec{i} = \vec{a} \cdot (\vec{i} + \vec{j}) = \vec{a} \cdot (\vec{i} + \vec{j} + \vec{k}) = 1 \) then \(\vec{a} = \)

1) \(\vec{i} + \vec{j} \)
2) \(\vec{i} - \vec{k} \)
3) \(\vec{i} \)
4) \(\vec{i} + \vec{j} - \vec{k} \)

9. If \(\vec{a} \) and \(\vec{b} \) are unit vectors and \(|\vec{a} + \vec{b}| = 1 \) then \(|\vec{a} - \vec{b}| \) is equal to

1) \(\sqrt{2} \)
2) 1
3) \(\sqrt{5} \)
4) \(\sqrt{3} \)

10. The projection of \(\vec{a} = 3\hat{i} - \hat{j} + 5\hat{k} \) on \(\vec{b} = 2\hat{i} + 3\hat{j} + \hat{k} \) is

1) \(\frac{8}{\sqrt{35}} \)
2) \(\frac{8}{\sqrt{39}} \)
3) \(\frac{8}{\sqrt{14}} \)
4) \(\sqrt{14} \)

(Space for Rough Work)
11. If \(f : \mathbb{R} \to \mathbb{R} \) is defined by \(f(x) = x^3 \) then \(f^{-1}(8) = \)

1) \(\{2\} \)
2) \(\{2, \ 2w, \ 2w^2\} \)
3) \(\{2, \ -2\} \)
4) \(\{2, \ 2\} \)

12. \(R \) is a relation on \(\mathbb{N} \) given by \(R = \{(x, y) \mid 4x + 3y = 20\} \). Which of the following belongs to \(R \)?

1) \((-4, \ 12)\)
2) \((5, \ 0)\)
3) \((3, \ 4)\)
4) \((2, \ 4)\)

13. If \(\log_{10}7 = 0.8451 \) then the position of the first significant figure of \(7^{-20} \) is

1) 16
2) 17
3) 20
4) 15

14. \(\frac{1}{2.5} + \frac{1}{5.8} + \frac{1}{8.11} + \ldots \) upto \(n \) terms =

1) \(\frac{n}{4n+6} \)
2) \(\frac{1}{6n+4} \)
3) \(\frac{n}{6n+4} \)
4) \(\frac{n}{3n+7} \)

15. The ten's digit in \(1!+4!+7!+10!+12!+13!+15!+16!+17! \) is divisible by

1) 4
2) 3!
3) 5
4) 7

(Space for Rough Work)
16. The equation \(\frac{x^2}{2-\lambda} - \frac{y^2}{\lambda-5} - 1 = 0 \) represents an ellipse if

1) \(\lambda > 5 \)
2) \(\lambda < 2 \)
3) \(2 < \lambda < 5 \)
4) \(2 > \lambda > 5 \)

17. The equation to the normal to the hyperbola \(\frac{x^2}{16} - \frac{y^2}{9} = 1 \) at \((-4, 0)\) is

1) \(2x - 3y = 1 \)
2) \(x = 0 \)
3) \(x = 1 \)
4) \(y = 0 \)

18. The converse of the contrapositive of the conditional \(p \rightarrow \neg q \) is

1) \(p \rightarrow q \)
2) \(\neg p \rightarrow \neg q \)
3) \(\neg q \rightarrow p \)
4) \(\neg p \rightarrow q \)

19. The perimeter of a certain sector of a circle is equal to the length of the arc of the semicircle. Then the angle at the centre of the sector in radians is

1) \(\pi - 2 \)
2) \(\pi + 2 \)
3) \(\frac{\pi}{3} \)
4) \(\frac{2\pi}{3} \)

20. The value of \(\tan \frac{67 \frac{1}{2}}{2} + \cot \frac{67 \frac{1}{2}}{2} \) is

1) \(\sqrt{2} \)
2) \(3\sqrt{2} \)
3) \(2\sqrt{2} \)
4) \(2 - \sqrt{2} \)

(Space for Rough Work)
21. If e_1 and e_2 are the eccentricities of a hyperbola $3x^2 - 3y^2 = 25$ and its conjugate, then

1) $e_1^2 + e_2^2 = 2$
2) $e_1^2 + e_2^2 = 4$
3) $e_1 + e_2 = 4$
4) $e_1 + e_2 = \sqrt{2}$

22. If p and q are prime numbers satisfying the condition $p^2 - 2q^2 = 1$, then the value of $p^2 + 2q^2$ is

1) 5
2) 15
3) 16
4) 17

23. If $A(\text{adj} \ A) = 5I$ where I is the identity matrix of order 3, then $|\text{adj} \ A|$ is equal to

1) 125
2) 25
3) 5
4) 10

24. The number of solutions for the equation $\sin 2x + \cos 4x = 2$ is

1) 0
2) 1
3) 2
4) Infinite

25. $\int e^x \cdot x^5 \, dx$ is

1) $e^x \left[x^5 + 5x^4 + 20x^3 + 60x^2 + 120x + 120 \right] + C$
2) $e^x \left[x^5 - 5x^4 - 20x^3 - 60x^2 - 120x - 120 \right] + C$
3) $e^x \left[x^5 - 5x^4 + 20x^3 - 60x^2 + 120x - 120 \right] + C$
4) $e^x \left[x^5 + 5x^4 + 20x^3 - 60x^2 - 120x + 120 \right] + C$

(Space for Rough Work)
26. If \(f(x) \) is an even function and \(f'(x) \) exists, then \(f'(e) + f'(-e) \) is
 1) \(> 0 \) 2) \(0 \)
 3) \(\geq 0 \) 4) \(< 0 \)

27. If \(\alpha \) is a complex number satisfying the equation \(\alpha^2 + \alpha + 1 = 0 \) then \(\alpha^{31} \) is equal to
 1) \(\alpha \) 2) \(\alpha^2 \)
 3) \(1 \) 4) \(i \)

28. The derivative of \(\sin(x^3) \) w.r.t. \(\cos(x^3) \) is
 1) \(-\tan(x^3)\) 2) \(\tan(x^3)\)
 3) \(-\cot(x^3)\) 4) \(\cot(x^3)\)

29. A unit vector perpendicular to both the vectors \(\hat{i} + \hat{j} \) and \(\hat{j} + \hat{k} \) is
 1) \(\frac{-\hat{i} - \hat{j} + \hat{k}}{\sqrt{3}} \)
 2) \(\frac{\hat{i} + \hat{j} - \hat{k}}{3} \)
 3) \(\frac{\hat{i} + \hat{j} + \hat{k}}{\sqrt{3}} \)
 4) \(\frac{\hat{i} - \hat{j} + \hat{k}}{\sqrt{3}} \)

30. If \(A = \begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix} \) and \(B = \begin{vmatrix} c_1 & c_2 & c_3 \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix} \) then
 1) \(A = -B \)
 2) \(A = B \)
 3) \(B = 0 \)
 4) \(B = A^2 \)

(Space for Rough Work)
31. The locus of a point which moves such that the sum of its distances from two fixed points is a constant is
 1) a circle
 2) a parabola
 3) an ellipse
 4) a hyperbola

32. The centroid of the triangle ABC where $A = (2, 3)$, $B = (8, 10)$ and $C = (5, 5)$ is
 1) $(5, 6)$
 2) $(6, 5)$
 3) $(6, 6)$
 4) $(15, 18)$

33. If $3x^2 + xy - y^2 - 3x + 6y + K = 0$ represents a pair of lines, then $K =$
 1) 0
 2) 9
 3) 1
 4) -9

34. The equation of the smallest circle passing through the points $(2, 2)$ and $(3, 3)$ is
 1) $x^2 + y^2 + 5x + 5y + 12 = 0$
 2) $x^2 + y^2 - 5x - 5y + 12 = 0$
 3) $x^2 + y^2 + 5x - 5y + 12 = 0$
 4) $x^2 + y^2 - 5x + 5y - 12 = 0$

35. The characteristic roots of the matrix $\begin{bmatrix} 1 & 0 & 0 \\ 2 & 3 & 0 \\ 4 & 5 & 6 \end{bmatrix}$ are
 1) 1, 3, 6
 2) 1, 2, 4
 3) 4, 5, 6
 4) 2, 4, 6

(Space for Rough Work)
36. If \(A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \), then \(A^{-1} = \)

1) \(\frac{-1}{2} \begin{bmatrix} 4 & -2 \\ -3 & 1 \end{bmatrix} \)

2) \(\frac{1}{2} \begin{bmatrix} 4 & -2 \\ -3 & 1 \end{bmatrix} \)

3) \(\begin{bmatrix} -2 & 4 \\ 1 & 3 \end{bmatrix} \)

4) \(\begin{bmatrix} 2 & 4 \\ 1 & 3 \end{bmatrix} \)

37. The set \(\{-1, 0, 1\} \) is not a multiplicative group because of the failure of

1) Closure law

2) Associative law

3) Identity law

4) Inverse law

38. The angle of elevation of the top of a TV tower from three points \(A, B \) and \(C \) in a straight line through the foot of the tower are \(\alpha, 2\alpha \) and \(3\alpha \) respectively. If \(AB = a \), the height of the tower is

1) \(a \tan \alpha \)

2) \(a \sin \alpha \)

3) \(a \sin 2\alpha \)

4) \(a \sin 3\alpha \)

39. The angles \(A, B \) and \(C \) of a triangle \(ABC \) are in A.P. If \(b : c = \sqrt{3} : \sqrt{2} \), then the angle \(A \) is

1) \(30^0 \)

2) \(15^0 \)

3) \(75^0 \)

4) \(45^0 \)

40. \(\sin \left(2 \sin^{-1} \frac{\sqrt{63}}{\sqrt{65}} \right) = \)

1) \(\frac{2\sqrt{126}}{65} \)

2) \(\frac{4\sqrt{65}}{65} \)

3) \(\frac{8\sqrt{63}}{65} \)

4) \(\frac{\sqrt{63}}{65} \)

(Space for Rough Work)
41. The general solution of $|\sin x| = \cos x$ is (when $n \in \mathbb{Z}$) given by

\begin{align*}
1) \quad n \pi + \frac{\pi}{4} \\
2) \quad 2n \pi + \frac{\pi}{4} \\
3) \quad n \pi \pm \frac{\pi}{4} \\
4) \quad n \pi - \frac{\pi}{4}
\end{align*}

42. The real root of the equation $x^3 - 6x + 9 = 0$ is

\begin{align*}
1) \quad -6 \\
2) \quad -9 \\
3) \quad 6 \\
4) \quad -3
\end{align*}

43. The digit in the unit’s place of 5^{834} is

\begin{align*}
1) \quad 0 \\
2) \quad 1 \\
3) \quad 3 \\
4) \quad 5
\end{align*}

44. The remainder when $3^{100} \times 2^{50}$ is divided by 5 is

\begin{align*}
1) \quad 1 \\
2) \quad 2 \\
3) \quad 3 \\
4) \quad 4
\end{align*}

45. $\int_{\sqrt{1 - \sin^4 x}} dx = \frac{1}{2} \sin^{-1}(\sin^2 x) + C$

\begin{align*}
1) \quad \frac{1}{2} \sin^{-1}(\sin^2 x) + C \\
2) \quad \frac{1}{2} \cos^{-1}(\sin^2 x) + C \\
3) \quad \tan^{-1}(\sin^2 x) + C \\
4) \quad \tan^{-1}(2 \sin x) + C
\end{align*}
46. The value of \[\int_{-2}^{2} (ax^3 + bx + c) \, dx \] depends on the

1) value of \(b \)
2) value of \(c \)
3) value of \(a \)
4) values of \(a \) and \(b \)

47. The area of the region bounded by \(y = 2x - x^2 \) and the \(x \)-axis is

1) \(\frac{8}{3} \) sq. units
2) \(\frac{4}{3} \) sq. units
3) \(\frac{7}{3} \) sq. units
4) \(\frac{2}{3} \) sq. units

48. The differential equation \(y \frac{dy}{dx} + x = c \) represents

1) a family of hyperbolas
2) a family of circles whose centres are on the \(y \)-axis
3) a family of parabolas
4) a family of circles whose centres are on the \(x \)-axis

49. If \(f(x^5) = 5x^3 \), then \(f'(x) = \)

1) \(\frac{3}{\sqrt[5]{x^2}} \)
2) \(\frac{3}{\sqrt{x}} \)
3) \(\frac{3}{x} \)
4) \(\frac{3}{\sqrt[5]{x}} \)

50. \(f(x) = 2a - x \) in \(-a < x < a\)

\(= 3x - 2a \) in \(a \leq x \).

Then which of the following is true?

1) \(f(x) \) is discontinuous at \(x = a \)
2) \(f(x) \) is not differentiable at \(x \)
3) \(f(x) \) is differentiable at all \(x \geq a \)
4) \(f(x) \) is continuous at all \(x < a \)

(Space for Rough Work)
51. The maximum area of a rectangle that can be inscribed in a circle of radius 2 units is (in square units)
 1) 4
 2) 8π
 3) 8
 4) 5

52. If Z is a complex number such that $Z = -\overline{Z}$, then
 1) Z is purely real
 2) Z is purely imaginary
 3) Z is any complex number
 4) Real part of Z is the same as its imaginary part

53. The value of $\sum_{K=1}^{6} \left[\sin \frac{2K \pi}{7} - i \cos \frac{2K \pi}{7} \right]$ is
 1) i
 2) 0
 3) $-i$
 4) -1

54. $\lim_{x \to \infty} x \sin \left(\frac{2}{x} \right)$ is equal to
 1) ∞
 2) 0
 3) 2
 4) $\frac{1}{2}$

55. A stone is thrown vertically upwards and the height x ft. reached by the stone in t seconds is given by $x = 80t - 16t^2$. The stone reaches the maximum height in
 1) 2 seconds
 2) 2.5 seconds
 3) 3 seconds
 4) 1.5 seconds

(Space for Rough Work)
56. The maximum value of \(\frac{\log x}{x} \) in \((2, \infty)\) is

1) 1 \hspace{1cm} 2) \frac{2}{e}

3) \(e \) \hspace{1cm} 4) \frac{1}{e}

57. If \(f(x) = be^{ax} + ae^{bx} \), then \(f''(0) = \)

1) 0 \hspace{1cm} 2) 2ab

3) \(ab(a+b) \) \hspace{1cm} 4) \(ab \)

58. If \(\sqrt{\frac{1+\cos A}{1-\cos A}} = \frac{x}{y} \), then the value of \(\tan A = \)

1) \(\frac{x^2+y^2}{x^2-y^2} \) \hspace{1cm} 2) \(\frac{2xy}{x^2+y^2} \)

3) \(\frac{2xy}{x^2-y^2} \) \hspace{1cm} 4) \(\frac{2xy}{y^2-x^2} \)

59. \(\int \frac{\sec x}{\sec x + \tan x} \, dx = \)

1) \(\tan x - \sec x + C \) \hspace{1cm} 2) \(\log (1+\sin x) + C \)

3) \(\sec x + \tan x + C \) \hspace{1cm} 4) \(\log \sin x + \log \cos x + C \)

60. If \(\int f(x) \, dx = g(x) \), then \(\int f(x) \cdot g(x) \, dx = \)

1) \(\frac{1}{2} f^2(x) \) \hspace{1cm} 2) \(\frac{1}{2} g^2(x) \)

3) \(\frac{1}{2} [g'(x)]^2 \) \hspace{1cm} 4) \(f'(x) \cdot g(x) \)

(Space for Rough Work)