Mathematics

Test Admission Ticket No.
OMR Serial Number

Question Booklet Version Code A
Question Booklet Sr. No. 84681
(Write this Code on your OMR Answer sheet)
(Write this Number on your OMR Answer sheet)

Candidates Kindly Note

* There are totally 60 questions in this booklet. This Question Booklet contains 20 pages.
* Before commencing the examination, please verify that all pages are printed correctly. If not, please draw the attention of your room invigilator for further assistance.
* The question paper and OMR (Optical Mark Reader) Answer Sheet are issued separately at the start of the examination.
* Please ensure to fill in the following on your OMR answer sheet in the relevant boxes:
 1. Name
 2. Question Booklet Version Code
 3. Question Booklet Serial Number
 4. Test Admission Ticket Number
* Kindly sign on your OMR answer sheet, only in the presence of the invigilator and obtain his/her signature on your OMR answer sheet.
* Candidate should carefully read this instruction printed on the Question Booklet and OMR Answer sheet and make correct entries on the Answer Sheet. As Answer Sheet is designed for OPTICAL MARK READER (OMR) SYSTEM, special care should be taken to mark the entries accurately.
* Special care should be taken to fill your QUESTION BOOKLET VERSION CODE and Serial No. and TEST ADMISSION TICKET No. accurately. The correctness of entries has to be cross-checked by the invigilators.
* Choice and sequence for attempting questions will be as per the convenience of the candidate.
* Each correct answer is awarded one mark.
* There will be no Negative marking.
* No marks will be awarded for multiple marking (marking multiple responses) of any question.
* Kindly DO NOT make any stray marks on the OMR answer sheet.
* Fill the appropriate circle completely like this ● for answering the particular question with BLACK/BLUE BALL POINT PEN only. USE OF PENCIL FOR MARKING IS PROHIBITED.
* On the OMR answer sheet use of whitener or any other material to erase/hide the circle once filled is not permitted.
* THINK BEFORE YOU INK.
* Any calculation/rough work needs to be done only in the space provided at the bottom of each page of the question paper.
* Immediately after the prescribed examination time is over, the OMR sheet is to be returned to the invigilator after ensuring that both the candidate and the invigilator have signed.
The volume of the tetrahedron formed by the points \((1, 1, 1), (2, 1, 3), (3, 2, 2)\), and \((3, 3, 4)\) in cubic units is

\[
\begin{align*}
\overrightarrow{AB} &= 2\mathbf{i} + 2\mathbf{j} + 3\mathbf{k}, \\
\overrightarrow{AC} &= 2\mathbf{i} + 3\mathbf{j} + 3\mathbf{k}, \\
\overrightarrow{AD} &= 2\mathbf{i} + 2\mathbf{j} + 3\mathbf{k} \\
\text{Volume of the tetrahedron} &= \frac{1}{6} [\overrightarrow{AB} \times \overrightarrow{AC} \cdot \overrightarrow{AD}] = \frac{5}{6}
\end{align*}
\]
4. In the group \(\{1, -1\} \) under the binary operation \(\ast \) defined by \(a \ast b = ab + a + b \), the inverse of 10 is

a) \(\frac{1}{10} \)

b) \(\frac{11}{10} \)

c) \(\frac{-11}{10} \)

\(\checkmark \)

\(\frac{1}{10} \)

7. If \(3x \)

a) \(\frac{1}{10} \)

b) \(\frac{1}{10} \)

c) \(\frac{-11}{10} \)

d) \(\frac{-1}{10} \)

3. In the group \(\{1, 2, 3, 4, 5, 6\} \) under multiplication mod 7, \(2^4 \times 4 = \)

a) 1

b) 4

c) 2

\(\checkmark \)

d) 3

\(\checkmark \)

The group \(\mathbb{Z} \) has

a) exactly one subgroup

b) exactly two subgroups

c) no subgroups

\(\checkmark \) infinitely many subgroups

10. The group \(\mathbb{Z} \) has

a) exactly one subgroup

b) exactly two subgroups

c) no subgroups

d) infinitely many subgroups

Space for calculation / rough work
7. If $3x = 5 \pmod{7}$, then $x = 4$.
 a) $x = 2 \pmod{7}$
 b) $x = 3 \pmod{7}$
 c) $x = 4 \pmod{7}$
 d) none of these

8. The argument of the complex number $\sin \left(\frac{6\pi}{5} \right) + i \left(1 + \cos \frac{6\pi}{5} \right)$ is
 a) $\frac{\pi}{10}$
 b) $\frac{5\pi}{6}$
 c) $\frac{3\pi}{10}$
 d) $\frac{2\pi}{5}$

9. The maximum value of $n < 101$ such that $1 + \sum_{i=1}^{n} i^2 = 0$ is
 a) 96
 b) 97
 c) 99
 d) 100
1. The value of \((1+\sqrt{-3})^2 + (-1-\sqrt{-3})^2\) is

(a) 2

(b) 4

(c) 2

(d) 0

2. The value of \((1+\sqrt{-3})^2 + (-1-\sqrt{-3})^2\) is

\[2 \cdot 6^2 \left[\left(\frac{1+\sqrt{-3}}{2} \right)^6 + \left(\frac{-1-\sqrt{-3}}{2} \right)^6 \right]

3. The value of \((1+\sqrt{-3})^2 + (-1-\sqrt{-3})^2\) is

(a) 2

(b) 4

(c) 2

(d) 0

4. All complex numbers \(z\) which satisfy the equation \(\frac{z-6i}{z+6i} = 1\) lie on the

(a) imaginary axis

(b) real axis

(c) neither of the axes

(d) none of these

5. If \(x + iy = \text{cis} \theta\), then \(x^2 + y^2 = \text{cos}^2 \theta + \text{sin}^2 \theta\) is equal to

(a) 1

(b) 0

(c) \(\text{cis} \theta\)

(d) \(\text{cis} -\theta\)

6. The value of \(\sin \left(\cot^{-1} \left(\cos \left(\tan^{-1} \frac{1}{x} \right) \right) \right)\) is

(a) \(\frac{1-x^2}{1+x^2}\)

(b) \(\frac{1-x^2}{\sqrt{1+x^2}}\)

(c) \(\frac{1-x^2}{1+x^2}\)

(d) \(\frac{1+x^2}{\sqrt{1+x^2}}\)
3. The value of $\alpha \neq 0$ for which the function $f(x) = 1 + \alpha x$ is the inverse of itself is

4. Let $y = f(\chi)$, $\chi = 1 + \lambda \chi$ \implies $\chi = \frac{y - 1}{\alpha}$

5. $f(x)$ is the inverse of itself

6. $x - 1 = (1 + \lambda x)$

7. $\alpha^{2} - 1) \chi + (\lambda + 1) = 0$

8. $(\lambda + 1) \alpha \chi - \chi + 1 = 0$

9. If x^{r} occurs the expansion of $\left(\frac{x + 1}{x}\right)^{r}$, then its coefficient is

10. $k^\text{th} \text{ term} = \frac{n!}{k!} \left(\frac{1}{x}\right)^{n-k}$

11. Power of x, x^{2k-m}.

12. Set $x^{2k-m} = y^{r}$,

13. $2k - m = \frac{n + m}{2}$

14. If $\tan A - \tan B = x$ and $\cot A - \cot B = y$, then $\cot (A - B) =$

15. \begin{align*}
 \frac{1}{y} - \frac{1}{x} & = \frac{\tan A - \tan B}{\tan A \cdot \tan B} = y \quad \text{Given} \quad \tan - \tan B = x - (2) \\
 \frac{1}{\tan B} + \frac{1}{\tan A} & = \frac{\tan A - \tan B}{\tan A \cdot \tan B} = y - (2) \\
 \text{Eq (2) + 3} & = \tan A - \tan B = x/y \quad \text{Put this value in eqn (1)}
\end{align*}

16. $\cot (A - B) = \frac{1 + \frac{1}{y}}{x} = \frac{1}{x} + \frac{1}{y}$
Mathematics

17. If \(\sin \theta, \cos \theta \), and \(\tan \theta \) are in G.P. then \(\cot \theta = \cot^2 \theta \) is

\[\cos^2 \theta = \sin \theta \cdot \tan \theta \Rightarrow \cos^2 \theta = \sin^2 \theta \]

a) \(\sqrt{2} \)

b) \(\frac{3}{2} \) (c) \(\frac{1}{2} \)

d) \(2 \)

18. If \(\frac{3x^2 - 2x + 4}{(x + 1)^3} = \frac{A}{x + 1} + \frac{B}{(x + 1)^2} + \frac{C}{(x + 1)^3} \) then

\((A + B + C, A, B, C) = \)

a) \((2,0,0) \)

b) \((-8,12) \)

c) \((8,-12) \)

d) \((-8,12) \)

Put \(x = 0 , \)

then \(A_1 + A_2 + A_3 + A_4 + A_5 + A_6 = 4 \)

only "d" \((-8,12) \) satisfies

the solution.
19. If \(\log_2 (2^{x+1} + 6) + \log_2 (4^{x+1}) = 5 \), then \(x = \) __________.

\(\log_2 (2^{x+1} + 6) \cdot \log_2 (4^{x+1}) = 5 \)

\((2^{x+1} + 6) \cdot (2^{2x+2}) = 2^5 \)

\(y = 2^{x+1} \)

\((y+6)y = 32 \) or \((y-2)(y^2 + 8y + 16) = 0 \)

Possible values for \(y = 2^{x+1} = 2^1 \) or \(x+1 = 1 \) or \(x = 0 \.

20. If \(a, b, c, d \) are the roots of the equation \(x^4 + 2x^3 + 3x^2 + 4x + 5 = 0 \), then \(1 + n^2 + b^2 + c^2 + d^2 \) is equal to

\(a) \ -2 \)

\(b) \ 2 \)

\(c) \ 1 \)

\(d) \ 1 \)

\(1 + (a^2 + b^2 + c^2 + d^2) = 1 + (a + b + c + d)^2 - 2(ab + ac + ad + bc + bd + cd) \)

\(= 1 + (\text{sum of roots})^2 - 2(\text{sum of products of roots}) \)

\(= 1 + 1^2 - 2 \cdot 2 = 5 - 6 = 1 \)

21. If \(C_n, C_1, C_2, \cdots, C_n \) are binomial coefficients of order \(n \), then the value of \(\frac{C_1}{C_2} + \frac{C_3}{C_4} + \frac{C_5}{C_6} + \cdots = \)

\(\frac{2^n + 1}{n+1} \)

Integrate both sides from 0 to 1.

\(\frac{2^n + 1}{n+1} \)

\(m+1 \)

Again, \(\frac{2^n - 1}{m+1} \)

Integrate both sides from 0 to 1.

\(\frac{1}{m+1} \)

22. The value of \(\log_{0.2} \left(\frac{1}{4} + \frac{1}{8} + \frac{1}{16} + \cdots + \frac{1}{n} \right) \) is

\(a) \quad \) __________

\(b) \quad \) __________

\(c) \quad \) __________

\(d) \quad \) __________
27. If \(n(A) - n(B) = m \), then the number of possible bijections from \(A \) to \(B \) is
 a) \(m \)
 b) \(m! \)
 c) \(m^2 \)
 d) \(m \cdot m! \)

28. \(\sin^{-1} \left[x \sqrt{1-x} - \sqrt{x \sqrt{1-x^2}} \right] = \sqrt{1-(x^2)} - \sqrt{x \sqrt{1-x^2}} \)
 a) \(\sin^{-1}x - \sin^{-1} \sqrt{1-x} \)
 b) \(\sin^{-1}x + \sin^{-1} \sqrt{1-x} \)
 c) \(\sin^{-1}x - \sin^{-1} \sqrt{x} \)
 d) \(\sin^{-1}x + \sin^{-1} \sqrt{x} \)

29. If \(\tan \theta + \tan 4\theta + \tan 7\theta = \tan \theta \cdot \tan 4\theta \cdot \tan 7\theta \), then the general solution is
 a) \(\theta = \frac{n \pi}{4} \)
 b) \(\theta = \frac{n \pi}{12} \)
 c) \(\theta = \frac{n \pi}{6} \)
 d) none of these

30. If a vehicle with the point \((-3, 1)\) as its center touches the straight line \(x + 2y + 9 = 0\) then the coordinates of the points of contact is
 a) \((-3, 3)\)
 b) \((-3, -3)\)
 c) \((0, 0)\)
 d) \((\frac{7}{3}, \frac{-17}{3})\)

 \[\tan \theta = (1, 1) \]

31. \[x - 2y = 0 \]
 \[x + 2y + 9 = 0 \]
 \[y = 2x + c \]
 \[y = 2x - 3 \]
 \[\text{solve eqns (1) & (3)} \]
 \[x = -3 \]
 \[y = -3 \]
17. If the circles $x^2 + y^2 + 2gx + 2fy = 0$, and $x^2 + y^2 + 2g'x + 2f'y = 0$ touch each other, then the given condition is:

$$\frac{2g}{2g'} = \frac{2f}{2f'} \Rightarrow g'g = f'f$$

b)

28. The number of common tangents to the circles $x^2 + y^2 - 4$ and $x^2 + y^2 - 4x + 2y - 4 = 0$ is:

a) 2

b) 3

c) 4

d) none of these

29. The length of the tangent drawn from any point on the circle $x^2 + y^2 - 4x + 6y - 4 = 0$ to the circle $x^2 + y^2 - 4x + 6y - 4 = 0$ is:

a) 2

b) 4

c) 1

d) none of these

30. If the foci of the ellipse $\frac{x^2}{25} + \frac{y^2}{b^2} = 1$ and the hyperbola $\frac{x^2}{144} - \frac{y^2}{81} = \frac{1}{25}$ coincide, then the value of b^2 is:

a) 25

b) 9

c) 16

d) 4

31. The latus rectum of the ellipse is half the minor axis. Then its eccentricity is

a) $\frac{1}{\sqrt{2}}$

b) $\frac{1}{\sqrt{3}}$

c) $\sqrt{3}$

d) none of these
32. The ends of the latus rectum of the parabola $x^2 + 10x - 16y + 25 = 0$ are

$$\sqrt{(3,4), (-13,4)}$$

b) $(5,-8), (-5,8)$

c) $(3,-4), (13,4)$

d) $(-3,-4), (13,-4)$

33. Which of the following functions is differentiable at $x=0$?

a) $\cos(|x|) + |x|$

b) $\cos(|x|) - |x|$

c) $\sin(|x|) + |x|$

d) $\sin(|x|) - |x|$

$$\frac{dy}{dx} = \frac{\cos t + \log \tan \frac{t}{2}}{2}, y = e^{\sin t}, \text{then } \frac{dy}{dx} =$$

a) $\tan t$

b) $\cot t$

c) $-\cot t$

d) $-\tan t$

34. If

$$\frac{dy}{dt} = \frac{\cos t \sin t}{\cos^2 t} - \tan t$$

Find $\frac{dy}{dt}$ and $\frac{dx}{dt}$

$$\frac{dy}{dt} = \frac{\cos t \sin t}{\cos^2 t} - \tan t$$

a) $\tan t$

b) $\cot t$

c) $-\cot t$

d) $-\tan t$

35. If

$$\begin{bmatrix}
\tan \theta & -1 \\
1 & \tan \theta
\end{bmatrix}
= \begin{bmatrix}
a & b \\
b & a
\end{bmatrix}^{-1}, \text{then}
$$

$$\begin{bmatrix}
1 - \tan^2 \theta & -2 \tan \theta \\
2 \tan \theta & 1 - \tan^2 \theta
\end{bmatrix}
= \begin{bmatrix}
\frac{\cos \theta - \sin \theta}{\cos \theta + \sin \theta} & -2 \sin \theta \\
\sin \theta \cos \theta & \cos \theta - \sin \theta
\end{bmatrix}
$$

a) $a = 1 = b$

b) $a = \cos 2\theta, b = \sin 2\theta$

c) $a = \sin 2\theta, b = \cos 2\theta$

d) $a = \cos \theta, b = \sin \theta$

Space for calculation/rough work

36. If

$$\begin{bmatrix}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{bmatrix}
= \begin{bmatrix}
a & -b \\
b & a
\end{bmatrix}^{1/2}, \text{then}
$$

$$\begin{bmatrix}
\cos \theta - \sin \theta \\
\sin \theta \cos \theta + \sin \theta
\end{bmatrix}
= \begin{bmatrix}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{bmatrix}
$$

a) $a = \cos \theta$

b) $b = \sin \theta$

36. If \(A = \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix} \), then \(A^n \) is
a) \(\begin{bmatrix} 1 & 2n \\ 0 & 1 \end{bmatrix} \)
b) \(\begin{bmatrix} 1 & n^2 \\ 0 & 1 \end{bmatrix} \)
c) \(\begin{bmatrix} 1 & 2^n \\ 0 & 1 \end{bmatrix} \)
d) \(\begin{bmatrix} 1 & n^2 \\ 1 & 1 \end{bmatrix} \)

37. If \(a, \beta, \gamma \) are the roots of the equation \(x^3 + px + q = 0 \) then the value of the determinant \(\begin{vmatrix} a & \beta & \gamma \\ \beta & \gamma & a \\ \gamma & a & \beta \end{vmatrix} \) is.
a) \(q
\)
b) \(0
\)
c) \(p
\)
d) \(p^2 - 2q
\)

38. The number of distinct real roots of \(\begin{vmatrix} \sin x & \cos x & \cos x \\ \cos x & \sin x & \cos x \\ \cos x & \cos x & \sin x \end{vmatrix} \) in the interval \(\left[\frac{-\pi}{4}, \frac{\pi}{4} \right] \) is
a) 0
b) 1

Space for calculation/rough work
38. The sum of non-prime positive divisors of 450 is
 a) 1209
 b) 1299
 c) 1199
 d) 1099
 Answer: c)

40. The last digit of \(\sum_{p \leq 100} p \cdot \prod_{a=1}^{50} (2n)! \) is
 a) 2
 b) 4
 c) 6
 d) 8
 Answer: d)

41. The interval I such that \(\int_0^1 \frac{dx}{\sqrt{1+x^4}} \equiv 1 \) is given by
 a) \((0, \frac{1}{\sqrt{2}}) \)
 b) \(\left[\frac{1}{\sqrt{2}}, 1 \right] \)
 c) \(\left[\sqrt{2}, 2 \right] \)
 d) \(\left[\sqrt{2}, \frac{5}{4} \right] \)
 Answer: b)

42. \(\int \log(\tan x) \, dx = \)
 a) \(\frac{x}{2} \)
 b) \(0 \)
 c) 1
 d) \(\frac{x}{4} \)
 Answer: b)

43. \(\int_0^{\frac{\pi}{2}} \log(\sin x) \, dx = \frac{\pi}{2} \log \left(\frac{\pi}{2} \right) - \int_0^{\frac{\pi}{2}} \log(\cos x) \, dx \)
 \(\Rightarrow \int_0^{\frac{\pi}{2}} \log(\sin x) \, dx = \int_0^{\frac{\pi}{2}} \log(\cos x) \, dx = 0 \)
The value of \(\int \left(ax^3 + bx + c \right) dx \) depends on the

a) value of b
b) value of c
c) value of a
d) values of a and b

The area of the region bound by the curves \(y = x^2 \) and \(y = 4x - x^2 \) is

a) \(\frac{16}{3} \) sq. units
b) \(\frac{8}{3} \) sq. units
c) \(\frac{4}{3} \) sq. units
d) \(\frac{2}{3} \) sq. units

The particular solution of \(\frac{dy}{dx} = \frac{1 + y^2}{1 + x^2} \), when \(x = 1, y = 2 \) is

a) \(5 \left(1 + y^2 \right) = 2 \left(1 + x^2 \right) \)
b) \(2 \left(1 + y^2 \right) = 5 \left(1 + x^2 \right) \)
c) \(5 \left(1 + y^2 \right) = (1 + x^2) \)
d) \((1 + y^2) = 2 (1 + x^2) \)

The solution of the differential equation \(\frac{dy}{dx} = (x + y) \) is

a) \(\frac{1}{x + y} = c \)
b) \(\sin^{-1} (x + y) = x + c \)
c) \(\tan^{-1} (x + y) = c \)
d) \(\tan^{-1} (x + y) = x + c \)

\[\int 2 \left(ax^3 + bx + c \right) dx = \int c \left(dx \right) \] ; integral depends upon the value of \(c \).

Given parabola are \(y = x^2 \), \((y - 4) = -(x - 2)^2 \)
\(x \)-coordinate of intersect pt. \(= 0 \) \(\Rightarrow \)
area \(= \int \left(4x - x^2 \right) dx \)
\(= \int \left(2x^2 - \frac{2}{3} x^3 \right) dx \)
\(= \frac{8}{3} \) sq. units

The solution of the differential equation \(\frac{dy}{dx} = (x + y) \) is

a) \(\frac{1}{x + y} = c \)
b) \(\sin^{-1} (x + y) = x + c \)
c) \(\tan^{-1} (x + y) = c \)

Put \(x + y = 3 \) \(\Rightarrow \frac{dy}{dx} + 1 = \frac{dz}{dx} \)

Now given equation \(\frac{dz}{dx} + 1 = \frac{dx}{dz} \)
\(\Rightarrow \int dx = \int dz \)
\(\Rightarrow x = \tan^{-1} (x + y) \)
47. The maximum value of \(\left(\frac{1}{\sqrt{x}} \right) \) is
 a) \(e^{1/2} \)
 b) \(\sqrt{e} \)
 c) \(1 \)
 d) \(e^2 \)

48. Let \(x \) be a number which exceeds its square by the greatest possible quantity, then \(x = \)
 a) \(\sqrt{2} \)
 b) \(\frac{1}{4} \)
 c) \(3/4 \)
 d) \(1/3 \)

49. The subtangent at \(x = \pi/2 \) on the curve \(y = x \sin x \) is
 a) 0
 b) 1
 c) \(\pi/2 \)
 d) none of these

50. The value of \(\int \frac{10^{x^2}}{\sqrt{10^{-x} - 10^x}} \, dx \) is
 a) \(\frac{1}{\log_{10}} \sin^{-1}(10^x) + c \)
 b) \(2\sqrt{10^{-x^2}} + 10^x + c \)
 c) \(\frac{1}{\log_{10}} \sinh^{-1}(10^x) + c \)
 d) \(-\frac{1}{\log_{10}} \sinh^{-1}(10^x) + c \)

51. \(\int \frac{10^{x^2}}{\sqrt{10^{-x} - 10^x}} \, dx \) can be calculated as
 a) \(\frac{1}{\log_{10}} \int \frac{dy}{\sqrt{1 - y^2}} \) with \(y = 10^x \)
 b) \(\frac{1}{\log_{10}} \int \frac{dy}{\sqrt{1 - y^2}} \) with \(y = 10^{-x} \)
 c) \(\frac{1}{\log_{10}} \int \frac{dy}{\sqrt{1 - y^2}} \) with \(y = 10^x \log_{10} 10 \)
 d) \(\frac{1}{\log_{10}} \int \frac{dy}{\sqrt{1 - y^2}} \) with \(y = 10^{-x} \log_{10} 10 \)
\[\int \left(\frac{1}{\cos^2 x} + \frac{\sin x \cos x}{\cos^3 x} \right) dx = \int e^x \left(\sec^2 x + \tan x \right) dx = \int e^x (f'(x) + f(x)) dx \]

\[e^x \tan x + C \]

3. The locus of the midpoint of the intercept of the line \(x \cos \alpha + y \sin \alpha = p \) between the coordinate axes is

- a) \(x^2 + y^2 = 4p^2 \)
- b) \(x^2 + y^2 = p^2 \)
- c) \(x^2 + y^2 = 4p^2 \)
- d) \(x^2 + y^2 = p^2 \)

\[\cos^2 \alpha + \sin^2 \alpha = 1 \]

\[\frac{p^2}{4x^2} + \frac{p^2}{4y^2} = 1 \]

\[x^2 + y^2 = 4p^2 \]
If the line through $A = (-1, -5)$ is inclined at an angle 45° with the positive direction of the x-axis, then the coordinates of the two points on opposite sides of A at a distance of $3\sqrt{2}$ units are

a) $(7, 2)$, $(1, 8)$

Slope $= \tan 45^\circ = 1$ \[y = x + c \]

b) $(7, 2)$, $(1, -8)$

P$(4, 5)$ lies on line $8y$, $c = -9$

Now, $e^{\mu} \Rightarrow y = x - 9$

$\sqrt{17}$, -2, $(1, 8)$

c) Only $(7, 2)$ and $(1, -8)$ lies on above straight line e^{μ}, do not need for further calculation

d) $(7, 2)$, $(-1, 8)$

If the line $px + qy = 0$ coincides with one of the lines given by $ax^2 + 2hxy + by^2 = 0$ then

a) $aq^2 + 2bhp + b^2 = 0$

$\gamma = -\frac{b}{a} x$; put in given pair of lines

b) $aq^2 + 2bhp + b^2 = 0$

α, $a x^2 + 2h x (-\frac{b}{a} x) + b p^2 x^2 = 0$

c) $aq^2 - 2bhp + b^2 = 0$

d) None of these

The function $f(x) = \frac{\log((1+ax) - \log(1-bx)}{x}$ is undefined at $x = 0$. The value which should be assigned to f at $x = 0$ so that it is continuous at $x = 0$ is

a) $\frac{a+b}{2}$

b) $a+b$

c) $\log_2(a+b)$

d) $a-b$

Space for calculation/rough work
Mathematics

67. \(\lim_{n \to \infty} \frac{(1^2 + 2^2 + \cdots + n^2)}{(n+1)(n+10)(n+100)} = \left(\lim_{n \to \infty} \frac{n(n+1)(2n+1)}{6(n+1)(n+10)(n+100)} \right) \left(\lim_{m \to \infty} \sqrt[m]{m} \right) \)

a) 3
b) \(\frac{1}{3} \)
c) 2
\(\frac{2}{3} \)
d) \(\infty \)

68. The number of triangles in a complete graph with 10 non-collinear vertices is

\[\text{no. of triangle} = \binom{10}{3} = \frac{10 \times 9 \times 8 \times 7}{2 \times 3 \times 6} = 120 \]

69. The angle between hands of a clock when the time is 4.25 AM is

a) 17 \(\frac{1}{2} \)°
b) 14 \(\frac{1}{2} \)°
c) 13 \(\frac{1}{2} \)°
d) 12 \(\frac{1}{2} \)°

\[\theta_1 = \frac{360 \times 4}{12} = 120° \]
\[\theta_2 = \frac{360 \times 4 + 30 \times 25}{12} = 132.5° \]
\[\theta_1 - \theta_2 = 150 - 132.5 = 17 \frac{1}{2}° \]