PART - A (PHYSICS)

1. Which logic gate has only one input and one are put.

Ans. NOT GATE
2. In YDSE there is a point P on the screen. What is path difference at point P. Given $d=1 \mathrm{~mm}, \mathrm{y}=2 \mathrm{~mm}$ D = 1 m :-

Sol. Path difference at P

$\Delta x=d \sin \theta$
If θ is small
$\Delta \mathrm{x}=\mathrm{d} \tan \theta$
$\Delta x=\frac{d y}{D}$
Now $\mathrm{d}=1 \mathrm{~mm} ; \mathrm{y}=2 \mathrm{~mm}$ and $\Delta=1$ meter
$\Delta x=\frac{10^{-6} \times 2 \times 10^{-6}}{1}=2 \times 10^{-6}$ meter
3. $\frac{Q}{m}=$ was given E is given what is horizontal displacement of charge particle when it decend a distance of y meter. Given $\frac{Q}{m}=9.6 \times 10^{7} \mathrm{c} / \mathrm{kg}, \mathrm{E}=5 \times 10^{5} \mathrm{~V} / \mathrm{m}, \mathrm{y}=84 \mathrm{~cm}, \mathrm{~g}=10 \mathrm{~m} / \mathrm{s}^{2}$

Sol. Suppose particle falls down a distance y in t time
$y=\frac{1}{2} g t^{2} ; t=\sqrt{\frac{2 y}{g}}$
Now for x axis
$x=\frac{1}{2} a_{x} t^{2} \quad \Rightarrow \quad x=\frac{1}{2} \cdot \frac{Q E}{m} \cdot \frac{2 y}{g}$
Now $\quad \frac{\mathrm{Q}}{\mathrm{m}}=9.6 \times 10^{7} \mathrm{c} / \mathrm{kg}$ (given)
$\mathrm{E}=5 \times 10^{5} \mathrm{~V} / \mathrm{m}$
$Y=84 \mathrm{~cm}$
$\mathrm{g}=10 \mathrm{~m} / \mathrm{sec}$
$x=\frac{1}{2} \times \frac{9.6 \times 10^{7} \times 5 \times 10^{5} \times 2 \times 84 \times 10^{-2}}{10}$
$x=403.2 \times 10^{10}$ meter
$x=4.03 \times 10^{8}$ meter

