

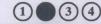
SUBJECT: PHYSICS	A physical quantity of is found to depend
SESSION: MORNING	TIME: 10.30 A.M. TO 11.50 A.M.

MAXIMUM MARKS	TOTAL DURATION	MAXIMUM TIME FOR ANSWERING
60	80 MINUTES	70 MINUTES

£	OKLET DETAILS
VERSION CODE	SERIAL NUMBER
vector diamitA	ton al aniw 548417
	A - 1

DOs:

- 1. Check whether the CET No. has been entered and shaded in the respective circles on the OMR answer sheet.
- 2. This Question Booklet is issued to you by the invigilator after the 2nd Bell i.e., after 10.30 a.m.
- 3. The Serial Number of this question booklet should be entered on the OMR answer sheet.
- The Version Code of this question booklet should be entered on the OMR answer sheet and the respective circles should also be shaded completely.
- 5. Compulsorily sign at the bottom portion of the OMR answer sheet in the space provided.


DON'TS:

- 1. THE TIMING AND MARKS PRINTED ON THE OMR ANSWER SHEET SHOULD NOT BE DAMAGED/MUTILATED/SPOILED.
- 2. The 3rd Bell rings at 10.40 a.m., till then;
 - Do not remove the paper seal present on the right hand side of this question booklet.
 - Do not look inside this question booklet.
 - Do not start answering on the OMR answer sheet.

IMPORTANT INSTRUCTIONS TO CANDIDATES

- 1. This question booklet contains 60 questions and each question will have one statement and four distracters. (Four different options / choices.)
- 2. After the 3rd Bell is rung at 10.40 a.m., remove the paper seal on the right hand side of this question booklet and check that this booklet does not have any unprinted or torn or missing pages or items etc., if so, get it replaced by a complete test booklet. Read each item and start answering on the OMR answer sheet.
- 3. During the subsequent 70 minutes:
 - Read each question carefully.
 - Choose the correct answer from out of the four available distracters (options / choices) given under each question / statement.
 - Completely darken / shade the relevant circle with a BLUE OR BLACK INK BALL POINT PEN
 against the question number on the OMR answer sheet.

Correct Method of shading the circle on the OMR answer sheet is as shown below:

- 4. Please note that even a minute unintended ink dot on the OMR answer sheet will also be recognised and recorded by the scanner. Therefore, avoid multiple markings of any kind on the OMR answer sheet.
- Use the space provided on each page of the question booklet for Rough Work. Do not use the OMR answer sheet for the same.
- 6. After the last bell is rung at 11.50 a.m., stop writing on the OMR answer sheet and affix your LEFT HAND THUMB IMPRESSION on the OMR answer sheet as per the instructions.
- 7. Hand over the OMR ANSWER SHEET to the room invigilator as it is.
- 8. After separating the top sheet (Our Copy), the invigilator will return the bottom sheet replica (Candidate's copy) to you to carry home for self-evaluation.
- 9. Preserve the replica of the OMR answer sheet for a minimum period of ONE year.

A physical quantity Q is found to depend on observables x, y and z, obeying relation $Q = \frac{x^3y^2}{z}$. The percentage error in the measurements of x, y and z are 1%, 2% and 4% respectively. What is percentage error in the quantity Q?

(3) 11 %

(4) 1%

2. Which of the following is not a vector quantity?

MAXIMUM TIME

(1) Weight

Nuclear spin

(3)

SERIAL NUMBER

Momentum (4) Potential energy

A car moves from A to B with a speed of 30 kmph and from B to A with a speed of 20 kmph. What is the average speed of the car?

The Version Code of this question booklet should be entered on the OMR answer sheet and the respective circles

25 kmph

THE TIMING AND MARK 24 kmph ASTARTUM ASSAMAG

50 kmph (3)

10 kmph

A body starts from rest and moves with constant acceleration for t s. It travels a distance x_1 in first half of time and x_2 in next half of time, then

- After the 3rd Bell is rung at 10.40 a.m., remove the paper seal on the right hand side of this question b where $x_1 = x_1$ and $x_2 = x_1$ are the space of items $x_2 = x_1$ and $x_2 = x_2$ and $x_3 = x_1$ are the space of items $x_1 = x_2$.
 - (3) $x_2 = 3x_1$

(4) $x_2 = 4x_1$

Space For Rough Work

Completely darken / shade the relevant circle with a BLUE OR BLACK INK BALL POINT PEN

After the last hell is rung at 11.50 a.m., stop writing on the OMR answer sheet and affix your LEFT HAND Hand over the OMR ANSWER SHEET to the room invigilator as it is.

Preserve the replica of the OMR answer sheet for a minimum period of OME year.

A person is driving a vehicle at uniform speed of 5 ms⁻¹ on a level curved track of radius 5. 5 m. The coefficient of static friction between tyres and road is 0.1. Will the person slip while taking the turn with the same speed? Take $g = 10 \text{ ms}^{-2}$.

Choose the correct statement.

- (1) A person will slip if $v^2 = 5 \text{ ms}^{-1}$ (2) A person will slip if $v^2 > 5 \text{ ms}^{-1}$
 - (3) A person will slip if $v^2 < 5 \text{ ms}^{-1}$ (4) A person will not slip if $v^2 > 10 \text{ ms}^{-1}$
- A stone is thrown vertically at a speed of 30 ms⁻¹ making an angle of 45° with the horizontal. What is the maximum height reached by the stone? Take $g = 10 \text{ ms}^{-2}$.

11. A 10 kg metal block is attached to a spring of spring constant 1000 Nm⁻¹. A block is

- (1) 30 m (2) 22.5 m
 - (3) 15 m

- (4) 10 m
- A force $\vec{F} = 5\hat{i} + 2\hat{j} 5\hat{k}$ acts on a particle whose position vector is $\vec{r} = \hat{i} 2\hat{j} + \hat{k}$. What is the torque about the origin?

 (1) $8\hat{i} + 10\hat{j} + 12\hat{k}$ (2) $8\hat{i} + 10\hat{j} - 12\hat{k}$

(1) $10 \,\mathrm{ms}^{-2}$

- (3) $8\hat{i} 10\hat{j} 8\hat{k}$ and (2) (4) $10\hat{i} 10\hat{j} \hat{k}$ and (1)
- 8. What is a period of revolution of earth satellite? Ignore the height of satellite above the 13. A train is approaching towards a platform with a speed of 10 ms - white thowards a platform with a speed of 10 ms - white thowards a platform with a speed of 10 ms - white thowards a platform with a speed of 10 ms - white thousand a speed o

Given: (1) The value of gravitational acceleration $g = 10 \text{ ms}^{-2}$.

- (2) Radius of earth $R_E = 6400$ km. Take $\pi = 3.14$.
- (1) 85 minutes

- (2) 156 minutes
- (3) 83.73 minutes ** 008
- (4) 90 minutes

			Cne	For Dow	ab W	lowle			
	(3)	340 Hz	90 minutes		(4)	360 Hz	83.73 minute	(3)	
	(1)	330 Hz	156 minutes	(2)		350 Hz	85 minutes	(1)	
	the platfor	m? Giver	speed of soun	d = 340 ms	1004	$\text{uth } R_{\rm B} = 6$	Radius of ea	(2)	
			z. What is the						
13.	A train is	approachi	ng towards a pl	atform with	a sp	eed of 10 r	ns ⁻¹ while blo	wing a whistl	e
the			Ignore the heig						
	(3)	200 ms ⁻¹			(4)	0.1 ms^{-1}			
	(1)	100 ms ⁻¹	$10\hat{i} - 10\hat{j} - \hat{k}$	(4)	(2)	10 ms ⁻¹	$8\hat{1} - 10\hat{j} - 8\hat{k}$		
			e speed of trans				8i + 10j + 11		
12.			m length has						d
it is			osition vector i						1.
		200 ms ⁻²				0.1 ms ⁻²	A A	(-	
		10 ms^{-2}		(4)	(2)	100 ms ⁻²	III CI	(0)	
	the block		10 m	(4)			15 m	(3)	
			librium positio	n by 10 cm	and	released. T	he maximum	acceleration of	f
11.			k is attached						S
-			the stone? Ta						
adt	(3)	270 °C	s ⁻¹ malcing an	ed of 30 m	(4)	727 °C	trov nazonát a	i agota A	
	(1)	1000 °C				90 °C			
	Given sin	k temperat	ure = 27°C	ms^{-1} (4)	<51	Il slip if v2	A person wi	(3)	

A period of geostationary satellite is to be perform a period of geostationary satellite is to be period of geostation and geostationary satellite is to be period of geostation and geostation and geostation and geostation and geostation are geostationally satellite is to be period of geostation and geostation are geostationally satellite in the geostation and geostation are geostation and geostation and geostation are geostation and geostation are geostation and geostation and geostation are geostation are

What is the source temperature of the Carnot engine required to get 70% efficiency?

(3) 30 h

while taking the turn with the 48pe (4)ed ? Take g = 10 ms-2.

	(3)	7.2 km			(4)	2 km		(~)	
	(1)	4 km	20 D	(4)	(2)	4.5 km	15 D	(3)	
18.		ane executes a					ph with its wi		at
	(3)	>4 C			(4)	10 C			
		4 °C > 4 °C	7.5 cm	(4)		<4°C 10°C		(3)	
17.		ous expansion	of water, at				sity of water i	s maximum	?
							. What is foca		
bo	ningan(3)	Third harmon	nic romine	concav	(4)	Second ha	rmonic	An object	21.
	(1)	Fifth harmon	ic		(2)	Fourth har	monic		
16.		30 cm long a ipe resonates a	a family at a second	CAN		-			nic
			Adiabatic	(2)			Isothermal	(1)	
	(3)	between 200	0 to 3000	type of t	s(4)a	between 40	000 to 5000 sa	A cycle ty	20,
	(1)	less than 100	0		(2)	greater tha	n 1000		
15.	A flow of	liquid is stream	nline if the F	Reynold	numb	er is	2 ms ⁻¹	(3)	
	(3)	$2\pi \text{ rad s}^{-2}$	0.5 ms ⁻¹	(2)	(4)	$40\pi \text{ rad s}^{-2}$	1 ms ⁻¹⁻¹	(1)	
	(1)	oun rad s	er A to ante.	V. IIIC V	(2)	90π rad s	ass 27 kg mo	an to Anna	

14. A rotating wheel changes angular speed from 1800 rpm to 3000 rpm in 20 s. What is the

	with angubody of m	ass 27 kg i						
	(1)	1 ms ⁻¹) 40π rad s ⁻²	(2)	0.5 ms ⁻¹	2π rad s ⁻²	(3)	
	(3)	2 ms ⁻¹		(4) Seynold num	1.5 ms ⁻¹	iquid is stream	A flow of I	15.
		1000 THE BILL					hive your A	
20.	A cycle ty	re bursts s	addenly. What is	the type of the	his process	between 2009	(3)	
	(1)	Isotherma	al	(2)	Adiabatic			
			ds produces harm speed of sound i					
		occ - m	a pimos no nosde	nevio i evil	1.1 KITZ SOI	pe resonance a		
			speed or sound in			pe resonates a Fifth harmon		
21.	An object	is placed		of a concave	e mirror pro	Fifth harmon		ied
	An object real image	is placed a	at 20 cm in front focal length of the	of a concave mi	e mirror pro	duces three ti	mes magnif	
	An object real image	is placed at the world the	at 20 cm in front focal length of the	of a concave mi	e mirror pro	duces three times three times expansion	mes magnif	
	An object real image	is placed a	at 20 cm in front focal length of the	of a concave mi	e mirror pro	duces three ti	mes magnif	
5	An object real image (1)	is placed at the second	at 20 cm in front focal length of the	of a concave mine (2)	e mirror pro rror ? 6.6 cm 7.5 cm	duces three times three times are superior to the contract of	mes magnif	17.
7	An object real image (1) (3)	is placed at the world and the world are the world and the world are the	at 20 cm in front focal length of the	of a concave mi (2) (4)	e mirror pro rror ? 6.6 cm 7.5 cm	duces three time	In anomalo (1) (1) (2) (3)	17.
5	An object real image (1)	is placed at the second	at 20 cm in front focal length of the	of a concave mine (2) (4) at is power of (2)	e mirror pro rror ? 6.6 cm 7.5 cm	duces three times three times are superior to the contract of	In anomalo (1) (1) (1) (3) (45°, What	17.

23. A microscope is having object	ctive of focal length 1 cm and eyepiece of focal length 6 cm.
If tube length is 30 cm and in	nage is formed at the least distance of distinct vision, what is
the magnification produced b	y the microscope? Take D = 25 cm.
(1) 6	(2) 150

The maximum kinetic energy of the photoelectrons depends only on A fringe width of a certain interference pattern is $\beta = 0.002$ cm. What is the distance of 5th dark fringe from centre?

(1) 1×10^{-2} cm

(3) 25

(2) 11×10^{-2} cm

(4) 125

 $10(3) \times 1.1 \times 10^{-2}$ cm / 21 motor respectively (4) 3.28×10^{6} cm would see to do in W

Diameter of the objective of a telescope is 200 cm. What is the resolving power of a telescope? Take wavelength of light = 5000 Å.

(1) 6.56 × 10⁶
(3) 1 × 10⁶

3.28 \times 10⁵

3.0. What is the energy of the electron revolving in third orbit expression with the energy of the electron revolving in third orbit expression. (2) 3.28 \times 10⁶

(2) 3.4 eV

(3) 4:53 eV

A polarized light of intensity I₀ is passed through another polarizer whose pass axis makes an angle of 60° with the pass axis of the former. What is the intensity of emergent polarized light from second polarizer?

(4) 4 eV

(1) $I = I_0$

 $\frac{1}{2} = IA$ (2) $I = I_0/6$ I = TA (1)

(3) $I = I_0/5$ T = 20I = A (4) (4) $I_0/4$

	30	of 1 TO	is iormed	om and image i	If the element is 30 of the el	
(1)	12.27 Å		(2)	1.227 Å	the appointication pr	
(3)	0.1227 Å	(2) 150	(4)	0.001227 Å	0 (1)	
		(4) 125			(3) 25	
28. The maxim	mum kinetic energ	gy of the photo	electrons	depends only o	on	
diffunce of 5th	potential	m is $\beta = 0.002$	(2)	frequency	A fringe width of a c	.4
(3)	incident angle		(4)	pressure	dark fringe from cen	
)-2 cm	(2) 11×10		cm	(1) 1×10^{-2}	
	the following spec gnetic wave?	ctral series of l	hydrogen	atom is lying in	n visible range of	
(1) (3)	Paschen series Lyman series	200 cm. Wh Å.	(2) (4)	Pfund series Balmer series	Diameter of the objected telescope? Take was	
30. What is th	ne energy of the el		ng in third	l orbit expresse		
(1)	1.51 eV	(4) 3.28 ×	(2)	3.4 eV	(3) 1×10°	
(3)	4.53 eV		(4)	4 eV		
ss axis makes	olarizer whose pa				A polarized light of	6.
			1. 00 .			
	on between half li	fe (T) and dec	ay constar	nt (λ) is	an angle of 60° wi	
) T 1	fe (T) and dec	7 19	$\lambda T = \frac{1}{2}$	an angle of 60° wipolarized light from (1) $I = I_{o}$	
31. The relation) T 1	12,00	(2)	second polariz	potatized ugin nom	
31. The relation (1)	$\lambda T = 1$	(2) $I = I_o/6$	(2)	$\lambda T = \frac{1}{2}$ $\lambda = \log 2T$	polarized ugin from (1) $I = I_o$	
31. The relation (1)	$\lambda T = 1$	(2) I=I ₀ /6 (4) I ₀ /4	(2)	$\lambda T = \frac{1}{2}$ $\lambda = \log 2T$	polarized ugin from (1) $I = I_o$	

27. What is the de Broglie wavelength of the electron accelerated through a potential

32. A force between two protons is same as the force between proton and neutron. The nature of the force is

(1) Weak nuclear force

(2) Strong nuclear force

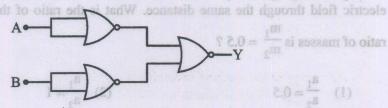
(3) Electrical force

(4) Gravitational force

(3) 6.25×10^{27}

Scalar

33. In n type semiconductor, electrons are majority charge carriers but it does not show any negative charge. The reason is


(1) electrons are stationary

(2) electrons neutralize with holes

(3) mobility of electrons is extremely small

(4) atom is electrically neutral

34. For the given digital circuit, write the truth table and identify the logic gate it represents:

(1) OR-Gate

(2) NOR-Gate

(3) NAND-Gate

(4) AND-Gate

35. If α -current gain of a transistor is 0.98. What is the value of β -current gain of the transistor ?

(1) 0.49

(2) 49

(3) 4.9

(4) 5

36. A tuned amplifier circuit is used to generate a carrier frequency of 2 MHz for the of the force is amplitude modulation. The value of \sqrt{LC} is (1) $\frac{1}{2\pi \times 10^6}$ is contained (4) (2) $\frac{1}{2 \times 10^6}$ is contained (5) (2) $\frac{1}{2 \times 10^6}$ (3)

$$(1) \quad \frac{1}{2\pi \times 10}$$

$$(2) \quad \frac{1}{2 \times 10^6}$$

(3)
$$\frac{1}{3\pi \times 10^6}$$

33. In type semiconductor,
$$\frac{1}{4\pi \times 10^6}$$
 (4) $\frac{1}{4\pi \times 10^6}$ (5) show any

37. If a charge on the body is 1 nC, then how many electrons are present on the body?

(1)
$$1.6 \times 10^{19}$$

(2)
$$6.25 \times 10^9$$

negative charge. The reason is

0.49

4.9

(3)
$$6.25 \times 10^{27}$$

(2)
$$6.25 \times 10^9$$

(4) 6.25×10^{28}

38. Two equal and opposite charges of masses m_1 and m_2 are accelerated in an uniform electric field through the same distance. What is the ratio of their accelerations if their ratio of masses is $\frac{m_1}{m_2} = 0.5$?

(1)
$$\frac{a_1}{a_2} = 0.5$$
 (2) $\frac{a_1}{a_2} = 1$ (3) $\frac{a_1}{a_2} = 2$ (4) $\frac{a_1}{a_2} = 3$ (5) $\frac{a_1}{a_2} = 3$ (6) $\frac{a_1}{a_2} = 3$ (7) $\frac{a_1}{a_2} = 3$ (8) $\frac{a_1}{a_2} = 3$ (9) $\frac{a_1}{a_2} = 3$ (1)

(2)
$$\frac{a_1}{a_2} = 1$$

(3)
$$\frac{a_1}{a_2} = 2$$

(4)
$$\frac{a_1}{a_2} = 3$$

39. What is the nature of Gaussian surface involved in Gauss law of electrostatic?

49

3

(1) Scalar

(2) Electrical

(3) Magnetic

(4) Vector

40.	What is th	ie electric	potential at a dis	stance of 9	cm f	rom 3 nC?	alent resistan	The equiv	.45.
	(1)	270 V	resistances?	le values of	(2)	3VWQ	t resistance is	equivalen	
	(3)	300 V			(4)	30 V			
			8 22, 1 22	(2)			$4\Omega, 6\Omega$	(1)	
	When a d reads 2 V	ielectric sl . What is t	V when connect ab is introduced the dielectric cornelled asyrg V of ad or barrot at a	between pustant of the	olates mat	s for the san terial?	ne configurati	on, voltmeter In a potential	
							1-1130		
42.			or of radius 2 cm 3 cm from the				h 3 nC. What		ic
	(1)	3×10^{6} V				3 V m ⁻¹			
			√ m ⁻¹				m ⁻¹		
	nounW Ma	aagifelic ri	ne presence or n	c force in th			i particle expe ing stalement		12
43.	A carbon	film resisto	r has colour cod	Green Rla					
10.	(1)			naguene ne	II AMI		The value of the	C TOSISTOI IS	
		500 . 50	ld is parallel to ΩM &	nagnetic fie	(4)	500 MIS2	The particle	(2)	
	(3)		o M12 field is perpend		(-)				
44.	then conn	ected to a	battery of emf battery?	2V and int	erna	1 resistance	0.5Ω . What	is the curren	
	(1)	4 A	ged particle?	d by a char	(2)	4 Adaq ad	field, what is	magnetic	
		1	Elliptical			3	Circular	(1)	
	(3)	$\frac{4}{17}$ A	Helical	(4)	(4)	1 A	Linear	(3)	

45.	The equiv	alent resistai	nce of two resistor	rs connect	ted in series is	s 6 12 and	their paral	lel
	equivalent	t resistance is	$\frac{4}{3}\Omega$. What are the	values of	resistances?	270 V 300 V	(1)	
	(1)	$4\Omega, 6\Omega$		(2)	8 Ω, 1 Ω			
	In a poten	tiometer expereplaced by a	anallel plate capaci plates for the san be material? To ello a cell of another cell, balance	to mater f emf 1.25	o obsoloib s V gives balar	the simulation of the simulati	h of 30 cm.	. If
		$\simeq 1.57 \text{ V}$ $\simeq 1.47 \text{ V}$			≥ 1.37 V mo €	listance of	field at a d	12.
			(2) 3 V m ⁻¹			3×106 V		
47.		l particle expering statement	eriences magnetic t is correct?	force in th	e presence of 1	magnetic fi	eld. Which	of
	e (1)	The particle	is moving and ma	gnetic fiel	d is perpendic	ular to the	velocity.	13.
	(2)	The particle	e is moving and ma	gnetic fiel	ld is parallel to	velocity.	(1)	
	(3)	The particle	is stationary and	nagnetic f	ield is perpend	licular.	(3)	
	(4)	The particle	is stationary and	nagnetic f	ield is parallel	iger In own		
			nternal resistance					
48.	If a veloc	city has both	perpendicular and the path followed	d parallel	components v	adt daner	flouring th	ı a
	(1)	Circular		(2)	Elliptical	4		
	(3)	Linear	(4) 1 A 12	(4)	Helical	17 A	(3)	
-			Space For	Rough W	ork			

		Spa	ace For Rough V	Vork
	(3)	3.142 A m ²	(4)	3 A m ²
	(1)	$3.142 \times 10^4 \text{ A m}^2$	(4) (2)	(3) $\frac{2}{\pi} \times 10^5 \mathrm{Hz}$ $^2 \mathrm{m A} ^{10}$
	moment o	f the coil?		
52.	A circular	coil of radius 10 cm an	d 100 turns car	ries a current 1A. What is the magnetic
	(3)	0.5 Ω ΣΗΝ 18 ΥΣΗΣΙΡΕ	(4)	a frequency A.C. source iΩ 20.0 d. dissipated?
ìi.	tance 10 Ω	pacitance 2 µF and 20.6	ctance 5 mH, ca	S6. A series LCR circuit contains icduc
	(1)	5 0	(2)	9.95
	Given: Fu	all scale deflection of the	galvanometer is	s 5 mA. V 4.141 (8)
		o an ammeter of range 1		(1) 200 V
51.	What is t	he value of shunt resist	ance required to	o convert a galvanometer of resistance
	peak value	ce as 100 V. What is the	ertain A.C. sour	55. A multimeter reads a voltage of a o
	(3)	$1.1 \times 10^{-29} \text{ kg}$	(4)	$\frac{1}{11} \times 10^{-29} \mathrm{kg}$
	(1)	$1 \times 10^{-29} \text{ kg}$	7.7	$0.1 \times 10^{-29} \text{ kg}$ (E)
		1 10 201	(2)	(1) 21
		10^{10} C kg ⁻¹ . What is 1.6×10^{-19} C.	s the mass of	the electron? Given charge of the
50.				in a circular orbit of hydrogen atom
			在新作业	
	(3)	$6.28 \times 10^{-7} \mathrm{T}^{-1}$	(4)	$6.28 \times 10^{-6} \mathrm{T}$
	(1)	6.28 × 10 ⁻⁴ T 3 mass 9	(2)	6.28 × 10 ⁻³ Tusansi (1)
49.				field inside the solenoid?
49.	A solenoi	d has length 0.4 cm. rac	lius 1 cm and 4	00 turns of wire. If a current of 5 A is

						What is the class of the magnetic passed as well as the class of the magnetic passed as the class of the class of the magnetic passed as the class of the c
(1)	Diam	agnetic 01 × 85.0	(2)	(2)	Parar	magnetic × 82.0 (1)
(3)	Ferro	magnetic		(4)	Ferro	pelectric (1 × 8C.8 (E)
	2 J	$0.1 \times 10^{-29} \text{kg}$ $\frac{1}{11} \times 10^{-29} \text{kg}$	(2)		1 J 5 J	is $8.8 \times 10^{10} \text{ C kg}^{-1}$. We electron = $1.6 \times 10^{-19} \text{ C}$. (1) $1 \times 10^{-29} \text{ kg}$ (3) $1.1 \times 10^{-29} \text{ kg}$
voltage o	f A.C. s	ource?				100 V. What is the peak value of
(1) resistance	200 V	convert a galvar	uired to	(2)	100 V	 What is the value of shunt. 100 Ω into an ammeter of rai
(3)						Given : Full scale deflection

A series LCR circuit contains inductance 5 mH, capacitance 2 μ F and resistance 10 Ω . If a frequency A.C. source is varied, what is the frequency at which maximum power is dissipated?

(1) at
$$\frac{10^5}{\pi}$$
 Hz A I merce a current 1 Az Hz (2) but

(1) a
$$\frac{10^5}{\pi}$$
 Hz and a series a constant (2) $\frac{10^{-5}}{\pi}$ Hz and a following A (3) $\frac{2}{\pi} \times 10^5$ Hz and A (2) (4) $\frac{5}{\pi} \times 10^3$ Hz (1)

Space For Rough Work

(3) 3.142 A m²

57. A step down transformer has 50 turns on secondary and 1000 turns on primary winding. If a transformer is connected to 220 V 1A A.C. source, what is output current of the transformer?

(1)
$$\frac{1}{20}$$
 A

(2) 20 A

(4) 2 A

The average power dissipated in A.C. circuit is 2 watt. If a current flowing through a circuit is 2 A and impedance is 1 Ω , what is the power factor of the AC circuit?

(4) $\frac{1}{\sqrt{2}}$

59. A plane electromagnetic wave of frequency 20 MHz travels through a space along x direction. If the electric field vector at a certain point in space is 6 V m⁻¹, what is the magnetic field vector at that point?

(1)
$$2 \times 10^{-8} \text{ T}$$

(2) $\frac{1}{2} \times 10^{-8} \text{ T}$ (4) $\frac{1}{2} \text{ T}$

Two capacitors of 10 PF and 20 PF are connected to 200 V and 100 V sources respectively. If they are connected by the wire, what is the common potential of the capacitors?

(1) 133.3 volt

(2) 150 volt

(3) 300 volt

(4) 400 volt

- (3) 100 A

58. The average power dissipated in A.C. circuit is 2 watt. If a current flowing through a circuit is 2 A and impedance is 1 Ω , what is the power factor of the AC circuit ?

omagnetic wave of frequency 20 MHz travels e electric field vector at a certain point in sp direct vector at that point? magne

- 10-8 T

of 10 PF and 20 PF are com are connected by the will

capacitors?

.00

- (1) 133.3 volt
 - 300 volt

Space For Rough Work

space along x what is the