COMMON ENTRANCE TEST - 2004

 Subject : CHEMISTRY

 DATE : 19.05.2004
 VERSION SERIAL CODE NUMBER

 TIME : 2.30 P.M. TO 3.50 P.M. MAXIMUM MARKS : 60
 Please fill your CET No. below
 CODE NUMBER

 MAXIMUM TIME : 80 MINUTES
 039857

IMPORTANT INSTRUCTIONS TO CANDIDATES

(Please read the following instructions carefully, before you start answering on the OMR answer sheet)

- 1. The OMR answer sheet is issued at the start of the examination at 2.15 p.m., the candidate should first enter only Name and CET No. on the OMR answer sheet.
- 2. After the 2nd bell at 2.30 p.m. the Question Papers will be issued. Now, the candidate should enter the Version Code and Serial Number of question booklet on the OMR answer sheet. But, he shall not remove the staples on the right side of this booklet OR look inside the question booklet OR start answering on the OMR answer sheet until the 3rd bell rings.

As answer sheets are designed to suit the Optical Mark Reader (OMR) system, special care should be taken to fill those items accurately.

DO NOT DAMAGE OR MUTILATE THE TIMING, MARKS ON THE OMR ANSWER SHEETS.

- 3. Remove the staples at the right side to open the question paper booklet only after the 3rd bell at 2.40 p.m.
- 4. This question booklet contains 60 questions.
- 5. During the subsequent 70 minutes:
 - a) Read each question carefully.
 - b) Determine the correct answer from out of the four available choices given under each question.
 - c) Completely darken / shade the relevant circle with a blue or black ink ballpoint pen against the question number on the OMR answer sheet.

For example:

Q. No. 14: The product of 0.5×0.05 is: 1) 0.05 2) 0.005 3) 0.025 4) 0.25

As the correct answer is option no. 3, the candidate should darken the circle corresponding to option no. 3 completely with a blue or black ink ballpoint pen on the OMR answer sheet, as shown below:

- 6. For each correct answer, one mark will be awarded. For each wrong answer, quarter (1/4) mark will be deducted and if more than one circle is darkened for a given question, one mark will be deducted. Even a minute unintended dot will also be recognised and recorded by the scanner. Please avoid multiple markings of any kind.
- 7. Rough work should be done only on the blank space provided on each page of the question booklet. Rough work should not be done on the OMR answer sheet.
- 8. Please stop writing when the last bell rings at 3.50 p.m. Hand over the OMR answer paper set to the invigilator, who will separate the top sheet and will retain the same with him and return the bottom sheet replica to you to carry home.

NOTE: The candidate should safely preserve the replica of the OMR answer sheet for a minimum period of one year from the date of Common Entrance Test.

RL - 17

CHEMISTRY

- 1. A nitrogen containing organic compound gave an oily liquid on heating with bromine and potassium hydroxide solution. On shaking the product with acetic anhydride, an antipyretic drug was obtained. The reactions indicate that the starting compound is:
 - 1) Acetamide

2) Nitrobenzene

3) Aniline

- 4) Benzamide
- 2. The silver salt of a fatty acid on refluxing with an alkyl halide gives an:
 - 1) ether

2) amine

3) acid

- 4) ester
- 3. Pick out the one which does not belong to the family:
 - 1) Ptyalin

2) Lipase

3) Pepsin

- 4) Cellulose
- 4. Which of the following is wrongly matched?
 - 1) Decomposition of H_2O_2 First order reaction.
 - 2) Combination of H_2 and Br_2 to give HBr Zero order reaction.
 - 3) Saponification of $CH_3COOC_2H_5$ second order reaction.
 - 4) Hydrolysis of CH_3COOCH_3 pseudo unimolecular reaction.
- 5. The diameter of colloidal particles range from:

1) $10^3 m$ to $10^{-3}m$

2) $10^{-3}m$ to 10^{-6} m

3) $10^{-6}m$ to $10^{-9}m$

4) $10^{-9}m$ to $10^{-12}m$

							~	4 / .
	The number	0.0		1		an antum	number	1/2 are
C	The number	ot ソ n	electrons	naving	SDILL	auantum	Humber o	/2 arc
n.	THE HUMBEL	U1 2 P	CICCOI OILO		~	1		•

1) 2

2) 3

3) 6

4) 0

7. Pick out the alkane which differs from the other members of the group

- 1) 2 methyl butane
- 2) 2, 2 dimethyl butane
- 3) 2, 2 dimethyl propane
- 4) Pentane

8. 56 g of nitrogen and 8 g of hydrogen gas are heated in a closed vessel. At equilibrium 34 g of ammonia are present. The equilibrium number of moles of nitrogen, hydrogen and ammonia are respectively:

1) 1, 1, 2

2) 2, 1, 2

3) 1, 2, 2

4) 2, 2, 1

9. A process is taking place at constant temperature and pressure. Then:

1) $\Delta H = 0$

2) $\Delta S = 0$

3) $\Delta H = \Delta E$

4) $\Delta H = T \Delta S$

10. In a galvanic cell, the electrons flow from:

- 1) Anode to cathode through the external circuit.
- 2) Cathode to anode through the external circuit.
- 3) Anode to cathode through the solution.
- 4) Cathode to anode through the solution.

11.	On treating a mixture of two alkyl halides	with sodium metal in dry ether, 2-methyl propar	ıе
	was obtained. The alkyl halides are:	A.	

- 1) Chloromethane and Chloroethane
- 2) Chloromethane and 1- Chloropropane
- 3) 2 Chloropropane and Chloromethane
- 4) 2 Chloropropane and Chloroethane
- 12. Which of the following statements about benzyl chloride is incorrect?
 - 1) It is a lachrymatory liquid and answers Beilstein's test.
 - 2) It gives a white precipitate with alcoholic silver nitrate.
 - 3) It is less reactive than alkyl halides.
 - 4) It can be oxidised to benzaldehyde by boiling with copper nitrate solution.
- 13. The main product obtained when a solution of sodium carbonate reacts with mercuric chloride is:
 - 1) $HgCO_3$

2) $HgCO_3 \cdot Hg(OH)_2$

3) $Hg(OH)_{9}$

- 4) $HgCO_3 \cdot HgO$
- 14. In the electrothermal process, the compound displaced by silica from calcium phosphate is:
 - 1) Phosphorus

- 2) Phosphorus pentoxide
- 3) Calcium phosphide
- 4) Phosphine
- 15. The enthalpy of combustion of methane at 25°C is 890 kJ. The heat liberated when 3.2 g of methane is burnt in air is:
 - -890 kJ

2) 178 kJ

3) 445 kJ

4) 278 kJ

16.	The pres	ssure and t n dioxide g	emperatu gas would	re of 4:dm be :	³ of car	bor	r dioxide g	as are o	doubled	Ther	n the v	olume
		$4 dm^3$		2 - 6 52		2)	$8 dm^3$	•		• •	,	
	3)	$2\ dm^3$	•	L Ver		4)	$3 dm^3$::	4	•	
17.	4g of cop	per was d gave 5g of	issolved ir its oxide.	n concentra The equiv	ated nit valent v	ric vei	acid. The o	copper per is :	nitrate	soluti	on on	strong
	1)	12			· •				7 51 554 7		. *	
	3)	23	:	1.4		4)	32				-	: 1 : 1 : 1
18.				onia by th ₎ + 92.3 kJ			process, the follow	ing cor	nditions	is un	favour	able?
		Reducin	g the tem	perature	-	2)	Removing	g amm	onia as	it is f		
	3)	Increasi	ng the ten	nperature		4)	Increasin	g the p	ressure			••
19.	The che	mical equ	ilibrium o	f a reversi	ble rea	ctic	n is not in	fluence	ed by:			
,	1)			he reactan		2)	Tempera					
	3)	Pressure	.	•		4)	Catalyst		1.1	: '		
20.	Cumene Cumene		s the mos	t importan	t comn	ner	cial metho	d for tl	ne manu	ıfactu	re of p	henol.
•	1)	Vinyl be	nzene			2)	Propyl be	enzene				
	3)	,	yl ethyl b		**	4)	Ethyl ber	nzene	,		**	
	· · · · · ·			(Space	for Rou	ıgh	Work)					

21.	A solution contains 1.2046 x 10) ²⁴ hydrochloric	acid molecu	ıles in	one dm^3	of the s	olution.	The
	strength of the solution is :							

1) 4N 2) 8 N

3) 6 N

4) 2N

22. Nuclear theory of the atom was put forward by:

1) Neils Bohr

J. J. Thomson

3) Rutherford

Aston

- 1) three sigma bonds
- three pi bonds
- 3) one sigma bond and two pi bonds 4)
 - two sigma and one pi bond

$$H_{2(g)} + \frac{1}{2}O_{2(g)} \rightarrow H_2O_{(g)}$$
 is ΔH_1 and that of

$$H_{2(g)}+\frac{1}{2}O_{2(g)}\rightarrow H_2O_{(l)}$$
 is ΔH_2 . Then

1) $\Delta H_1 > \Delta H_2$

2) $\Delta H_1 = \Delta H_2$

3) $\Delta H_1 < \Delta H_2$

- 4) $\Delta H_1 + \Delta H_2 = 0$
- A radioactive isotope decays at such a rate that after 192 minutes only $\frac{1}{16}$ of the original amount remains. The half life of the radioactive isotope is:
 - 1) 12 min

24 min

3) 32 min 4) 48 min

26.	The reag	gent which does not give	acid chloride o	n treating with a	a carboxylic acid is :
		$SOCl_2$		PCl_3	
	3)	PCl_5	. 4)	Cl_2	
27.	Among t	he halogens, the one wh	ich is oxidised	by nitric acid is	
	1)	Chlorine	2)	Bromine	
	3)	Fluorine	4)	Iodine	
28.	The met	al which does not form a	mmonium nitr	ate by reaction v	with dilute nitric acid is:
	1)	Pb	2)	Mg	
	3)	Al	4)	Fe	· · · · · · · · · · · · · · · · · · ·
29.	The eler	ments with atomic numb	ers 9, 17, 35, 53	3, 85 are all :	
	1)	Heavy metals	2)	Light metals	
	3)	Noble gases	4)	Halogens	
30.		lectrolytic method of obt narge in order to :	aining alumini	um from purifie	d bauxite, cryolite is added
	1)	dissolve bauxite and re	ender it conduc	or of electricity.	
	2)	lower the melting poin	t of bauxite.		•
	. 3)	minimise the heat loss	due to radiation	n.	•
	4)	protect aluminium pro	•		
			base for Rough	Work)	

.

31.	Which	of the	following	is not an	amphoteric	substance?
-----	-------	--------	-----------	-----------	------------	------------

1) H_2O

2) NH_3

3) HNO_3

4) HCO_3

32. When 50 cm³ of $0.2 N H_2SO_4$ is mixed with 50 cm³ of 1N KOH, the heat liberated is:

1) 573 kJ

2) 573 J

3) 11.46 kJ

4) 57.3 kJ

33. An artificial radioactive isotope gave $\frac{14}{7}N$ after two successive β -particle emissions. The number of neutrons in the parent nucleus must be:

1) 5

2)

3) 9

4) 14

34. Stainless steel does not rust because:

- 1) Nickel present in it, does not rust
- 2) Iron forms a hard chemical compound with chromium present in it.
- 3) Chromium and nickel combine with iron.
- 4) Chromium forms an oxide layer and protects iron from rusting.

35. Which of the following combinations can be used to synthesise ethanol?

- 1) $CH_3 Mg I$ and $CH_3 COOC_2 H_5$
- 2) $CH_3 Mg I$ and $HCOOC_2H_5$
- 3) $CH_3 Mg I$ and $CH_3 CO CH_3$
- 4) $CH_3 Mg I$ and $C_2 H_5 OH$

36.	The reaction, $2SO_{2(g)} + O_{2(g)} \rightleftharpoons 2SO_{3(g)}$ is separately. The ratio of the reaction velocity		•
	1) 4:1	2)	8:1
	3) 1:8	4)	1:4
37. ⁻	In a mixture of acetic acid and sodium ace	tate t	he ratio of concentrations of the salt to the
	acid is increased ten times. Then the pH o	f the	solution :
	1) decreases ten fold	2)	increases ten fold
	3) increases by one	4)	decreases by one
38.	When a mixture of methane and oxygen is main product formed is:	pass	ed through heated molybdenum oxide, the
	1) Methanol	2)	Methanal
	3) Methanoic acid	4)	Ethanal
39.	Benzene can be obtained by heating either	benzo	oic acid with ' X ' or phenol with ' Y '. ' X ' and ' Y
	are respectively:		
	1) Zinc dust and sodium hydroxide	2)	Soda lime and copper
	3) Zinc dust and soda lime	4)	Soda lime and zinc dust
40.	An organic compound is boiled with alcoh	olic p	ootash. The product is cooled and acidified
	with HCl. A white solid separates out. The		
-	1) ethyl acetate	2)	methyl acetate
	3) ethyl benzoate	4)	ethyl formate

		11		A -1
41.	In qualitative analysis, in order the presence of dilute <i>HCl</i> to :	to detect second grou	p basic radical, $H_{\scriptscriptstyle 2}\!S$	gas is passed in
	1) decrease the dissociati	0.77.0	ase the dissociation	

- **42.** Aluminium displaces hydrogen from dilute HCl whereas silver does not. The E.M.F. of a cell prepared by combining Al / Al^{+3} and Ag / Ag^+ is 2.46 V. The reduction potential of silver electrode is + 0.80 V. The reduction potential of aluminium electrode is :
 - 1) 3.26 V

2) -1.66 V

4) decrease the dissociation of salt solution

3) + 1.66 V

- 4) -3.26 V
- 43. The first fraction obtained during the fractionation of petroleum is:

3) increase the dissociation of H_2S

1) Gasoline

- 2) Diesel oil
- 3) Hydrocarbon gases
- 4) Kerosene oil
- 44. Which of the following compounds gives trichloromethane on distilling with bleaching powder?
 - 1) Ethanol

2) Methanol

3) Methanal

4) Phenol

- 45. Benzoin is:
 - 1) α hydroxy aldehyde
 - 2) α hydroxy ketone
 - 3) compound containing an aldehyde and a ketonic group
 - 4) α , β unsaturated acid

46.		city constant of a react ture is raised to 310° K,			3.2×10^{-3} S	S ⁻¹ . Wh	en the
	1)	9.6×10^{-3}	2)	1.28×10^{-2}		. • • • •	
	3)	6.4×10^{-3}	4)	3.2×10^{-4}			•
47.	Select th	he $ ho K_a$ value of the stron	gest acid from t	he following :		;	
	1)	2.0	2)	4.5	*		
	3)	1.0	4)	3.0			
48.	Pick out	the unsaturated fatty a	cid from the fol	lowing:			
	1)	Oleic acid	. 2)	Palmitic acid	**		
	3)	Stearic acid	4)	Lauric acid			
49.	Nylon is	not a :			•	· <u>-</u>	
	1)	Copolymer	2)	Homopolymer			
	3)	Condensation polymer	4)	Polyamide			
50.	The coal	tar fraction which conta	ains phenol is :	•			e 1
	1)	Heavy oil	2)	Light oil	÷ .		
,	3)	Middle oil	4)	Green oil			

		t for the reaction is:		-	\mathbf{B} are consumed. The equilibrium
	.1)		2)	0.25	
	3)	0.5	4)	4.0	
52.	In froth	floatation process for the purific	ation o	ores, t	the particles of ore float because :
	1)	They are insoluble			
	2)	They bear electrostatic charge		:	
	3)	Their surface is not easily wett	ed by w	ater	
	4)	They are light		a	
53.	Which o	of the following statements about	amorp	hous so	olids is incorrect?
	1)	There is no orderly arrangemen	t of pa	rticles	
	2)	They are rigid and incompressi	ble.		
	3)	They melt over a range of temp	erature) .	
	4)	They are anisotropic.		<i>t</i>	
54.	Hydroge	en diffuses six times faster than g	as A. 7	he mol	lar mass of gas A is :
	1)	24	2)	36	
•	3)	72	4)	6	
	Dulong	and Datit's law is well a sub-face	*		
55.	Durong a	and Petit's law is valid only for :			

(Space for Rough Work)

4) non-metals

3) metals

56.	Identify t	he gas	which is	readily	adsorbed	by activated	charcoal:
------------	------------	--------	----------	---------	----------	--------------	-----------

1) H_{2}

2) *O*

3) N_2

4) SO_{2}

57. If the distance between Na^+ and Cl^- ions in sodium chloride crystal is X pm, the length of the edge of the unit cell is :

1) $\frac{X}{2}$ pm

2) 2 *X* pm

3) 4 X pm

4) $\frac{X}{4}$ pm

58. Which of the following statements is incorrect?

- 1) In $K_4[Fe(CN)_6]$ the ligand has satisfied both primary and secondary valencies of ferrous ion.
- 2) In $[Cu(NH_3)_4]SO_4$, the ligand has satisfied only the secondary valency of copper.
- 3) In $K_3[Fe(CN)_6]$, the ligand has satisfied only the secondary valency of ferric ion.
- 4) In $K_3[Fe(CN)_6]$, the ligand has satisfied both primary and secondary valencies of ferric ion.
- **59.** 2 Acetoxy benzoic acid is used as an:
 - 1) antiseptic

2) antipyretic

3) antimalarial

- 4) antidepressant
- 60. A nucleoside on hydrolysis gives:
 - 1) an aldopentose and a heterocyclic base.
 - 2) an aldopentose and orthophosphoric acid.
 - 3) a heterocyclic base and orthophosphoric acid.
 - 4) an aldopentose, a heterocyclic base and orthophosphoric acid

