Q. 1 – Q. 10 carry one mark each & Q.11 - Q.20 carry two marks each.

- Q.1 To which one of the following classes of enzymes does chymotrypsin belong?
 - (A) Oxidoreductase (B) Hydrolase
- (C) Transferase
- (D) Isomerase
- Q.2 The substrate saturation profile of an enzyme that follows Michaelis-Menten kinetics is depicted in the figure. What is the order of the reaction in the concentration range between 0.8 to 1.4 M?

- (A) Zero
- (B) Fraction
- (C) First
- (D) Second
- Q.3 Which one of the following conformations of glucose is most stable?
 - (A) Boat
- (B) Half Chair
- (C) Chair
- (D) Planar
- Q.4 Which one of the following profiles represent the phenomenon of cooperativity?

- Q.5 Which one of the following amino acids is responsible for the intrinsic fluorescence of proteins?
 - (A) Pro
- (B) Met
- (C) His
- (D) Trp
- Q.6 The glycosylation of the proteins occurs in_
 - (A) glyoxysomes

(B) lysosomes

(C) Golgi apparatus

(D) plasma membrane

	P	Increasi	ing concentration of sodi	um chloride	i	Phenyl-Sepharose			
			Group I			Group II			
Q.12	Match the protein elution condition given in Group I with the appropriate chromatography matrices from Group II .								
	(A) R	.&S	(B) P&R	(C) P&S	((D) Q&R			
			ced glutathione um dodecyl sulphate	(Q) Dithiothritol (S) Methionine					
Q.11 Among the reagents given below which one of the combination of reagents will NO break the disulphide bonds in the immunoglobulin molecules?									
Q. 11 -	- Q. 2	0 carry	two marks each.						
0.44				' O,					
Q.10	Measurement of the absorbance of a solution containing NADH in a path length of 1cm cuvette at 340 nm shows the value of 0.31. The molar extinction coefficient of NADH is 6200 M^{-1} cm ⁻¹ . The concentration of NADH in the solution is μM (correct to integer number).								
Q.9			f NADP+ molecules request n pentose phosphate path			_			
			·						
	(B) ch (C) in	nanging t	te in pH of mitochondria he conformation of F_0F_1 . P_i from inter membrane to the affinity of ADP to F	-ATPase to expel the A space.	ATP.				
Q.8	The movement of protons through the F_0F_1 -ATPase during mitochondrial respiration is required for								
	(B) ov (C) ov	ver-expre ver-expre	rmidylate synthase ession of hypoxanthine-g ession of inosine 5'-mono poxanthine-guanine phos	ophosphate cyclohydro	olase	ferase			
Q.7 Which one of the following properties of the myeloma cells is used technology to generate monoclonal antibody?						l in the hybridoma			

		Group I		Group II
	P	Increasing concentration of sodium chloride	i	Phenyl-Sepharose
1	Q	Increasing concentration of histidine	ii	Chromatofocusing
	R	Decreasing concentration of ammonium sulphate	iii	DEAE-Sephacryl
Ī	S	Decreasing concentration of H ⁺	iv	Ni-NTA

 $\begin{array}{ll} \text{(A) P-iii; Q-iv; R-i; S-iii} \\ \text{(C) P-i; Q-ii; R-iii; S-iv} \end{array} \qquad \qquad \begin{array}{ll} \text{(B) P-ii; Q-iv; R-i; S-iii} \\ \text{(D) P- iv; Q-ii; R-iii; S-i} \end{array}$

XL(Q) 2/4

GATE 2018 Q.13 Which one of the following is **NOT** a neurotransmitter? (A) Adrenaline (B) Glutamate (C) Histamine (D) Histidine Q.14 The type-II hypersensitivity reaction is mainly mediated by___ (A) IgE (B) IgM (C) IgA (D) T cells Q.15 Which one the following reaction mechanisms drives the conversion of low energy 3phosphoglyceraldehyde to high energy 1,3-bisphosphoglycerate? (A) Oxidation without anhydride bond formation (B) Oxidation coupled with anhydride bond formation (C) Substrate level phosphorylation (D) Formation of carboxylate A polymerase reaction is carried out for 10 cycles in a volume of 1 ml with 5 molecules of template DNA. Assuming that the efficiency of the reaction is 100 %, the number of molecules of DNA present in 100 µl at the end of the reaction is (correct to integer number). The secondary structure topology diagram of 400 amino acid long "Protein-X" is depicted in the figure. The start and end amino acid residue numbers of each α -helix are marked. The percentage (correct to integer number) of residues forming α-helix is_ α -helix An enzyme follows Michaelis-Menten kinetics with substrate S. The fraction of the

___ (correct to one decimal place). (K_m is Michaelis-Menten constant)

maximum velocity (V_{max}) will be observed with the substrate concentration $[S] = 4K_m$ is

3/4 XL(Q)

Q.20 The standard free energy (ΔG) values of reactions catalyzed by citrate lyase and citrate synthetase are -670 and -8192 cal/mol, respectively.

Citrate
$$\stackrel{\text{Citrate lyase}}{\longleftarrow}$$
 Acetate + Oxaloacetate $\Delta G_1' = -670 \text{ cal/mole}$

Acetyl-CoA + Oxaloacetate +
$$H_2O$$
 $\xrightarrow{\text{Citrate synthetase}}$ Citrate + CoA ΔG_2 = -8192 cal/mole

The standard free energy (in cal/mol) of acetyl-CoA hydrolysis is ____ (correct to integer number).

