Graduate Aptitude Test in Engineering 2021 Organising Institute - IIT Bombay

Chemistry (XL-P)

General Aptitude (GA)

Q. 1 - Q. 5 Multiple Choice Question (MCQ), carry ONE mark each (for each wrong answer: - 1/3).

Q.1	Gauri said that she can play the keyboard___ her sister.
(A)	as well as
(B)	as better as
(C)	as nicest as
(D)	as worse as

Graduate Aptitude Test in Engineering 2021
Organising Institute - IIT Bombay
Chemistry (XL-P)

Q. 2	A transparent square sheet shown above is folded along the dotted line. The folded sheet will look like \qquad .
(A)	
(B)	
(C)	
(D)	

Graduate Aptitude Test in Engineering 2021 Organising Institute - IIT Bombay

Chemistry (XL-P)

Q.3	If $\boldsymbol{\theta}$ is the angle, in degrees, between the longest diagonal of the cube and any one of the edges of the cube, then, $\cos \boldsymbol{\theta}=$
(A)	$\frac{1}{2}$
(B)	$\frac{1}{\sqrt{3}}$
(C)	$\frac{1}{\sqrt{2}}$
(D)	$\frac{\sqrt{3}}{2}$

Q. 4	If $\left(x-\frac{1}{2}\right)^{2}-\left(x-\frac{3}{2}\right)^{2}=x+2$, then the value of x is:
(A)	2
(B)	4
(C)	6
(D)	8

Q.5	Pen : Write :: Knife : Which one of the following options maintains a similar logical relation in the above?
(A)	Vegetables
(B)	Sharp
(C)	Cut
(D)	Blunt

Graduate Aptitude Test in Engineering 2021 Organising Institute - IIT Bombay
Q. 6 - Q. 10 Multiple Choice Question (MCQ), carry TWO marks each (for each wrong answer: - 2/3).

Q.6	Listening to music during exercise improves exercise performance and reduces discomfort. Scientists researched whether listening to music while studying can help students learn better and the results were inconclusive. Students who needed external stimulation for studying fared worse while students who did not need any external stimulation benefited from music. Which one of the following statements is the CORRECT inference of the above passage?
(A)	Listening to music has no effect on learning and a positive effect on physical exercise.
(B)	Listening to music has a clear positive effect both on physical exercise and on learning.
(C)	Listening to music has a clear positive effect on physical exercise. Music has a positive effect on learning only in some students.
(D)	Listening to music has a clear positive effect on learning in all students. Music has a positive effect only in some students who exercise.

Graduate Aptitude Test in Engineering 2021 Organising Institute - IIT Bombay

Chemistry (XL-P)

Graduate Aptitude Test in Engineering 2021 Organising Institute - IIT Bombay

Chemistry (XL-P)

Q. 8	The number of students in three classes is in the ratio 3:13:6. If $\mathbf{1 8}$ students are added to each class, the ratio changes to 15:35:21. The total number of students in all the three classes in the beginning was:
(A)	22
(B)	66
(C)	88
(D)	110

Chemistry (XL-P)
Q.9

Graduate Aptitude Test in Engineering 2021 Organising Institute - IIT Bombay

Chemistry (XL-P)

Q.10	Six students $\mathbf{P}, \mathbf{Q}, \mathbf{R}, \mathbf{S ,}, \mathbf{T}$ and U, with distinct heights, compare their heights and make the following observations. Observation I: \mathbf{S} is taller than \mathbf{R}. Observation II: Q is the shortest of all. Observation III: \mathbf{U} is taller than only one student. Observation IV: T is taller than S but is not the tallest. The number of students that are taller than \mathbf{R} is the same as the number of students shorter than
(A)	T
(B)	R
(C)	S
(D)	P

Graduate Aptitude Test in Engineering 2021 Organising Institute - IIT Bombay

Chemistry (XL-P)

Chemistry (XL-P)

Q. 1 - Q. 2 Multiple Choice Question (MCQ), carry ONE mark each (for each wrong answer: - 1/3).

Q.1	The geometry of $\mathrm{Fe}(\mathrm{CO})_{5}$ is (Given: Atomic number of $\mathrm{Fe}=\mathbf{2 6})$
(A)	pentagonal planar
(B)	square pyramidal
(C)	trigonal bipyramidal
(D)	trigonal pyramidal

Q. 2	The structure of the major product \mathbf{Q} of the following reaction is
(A)	
(B)	
(C)	
(D)	

Graduate Aptitude Test in Engineering 2021 Organising Institute - IIT Bombay

Chemistry (XL-P)
Q. 3 - Q. 5 Numerical Answer Type (NAT), carry ONE mark each (no negative marks).
Q. 3 The time taken by a first order reaction to reach $\mathbf{9 0 \%}$ completion is $\mathbf{2 0}$ s.

The time taken for the reaction to reach $\mathbf{5 0 \%}$ completion is \qquad s (rounded off to the closest integer).
Q. 4 The ground state energy of an electron in a hydrogen atom is $\mathbf{- 1 3 . 6 0} \mathbf{e V}$. The energy of the electron in the third excited state is \qquad eV (rounded off to two decimal places).

$$
\begin{array}{l|l}
\text { Q. } 5 & \begin{array}{l}
\text { A solution of a compound shows an absorbance of } 0.42 \text { at } 275 \mathrm{~nm} \text { in a } \\
\text { cuvette with } 0.1 \mathrm{dm} \text { light path. The molar absorptivity of the compound is } \\
\\
\varepsilon_{275}=8.4 \times 10^{3} \mathrm{M}^{-1} \mathrm{~cm}^{-1} . \text { The concentration of the compound is ___ } \\
\\
10^{-5} \mathrm{M} \text { (rounded off to the closest integer). }
\end{array} .
\end{array}
$$

Graduate Aptitude Test in Engineering 2021 Organising Institute - IIT Bombay
Q. 6 - Q. 9 Multiple Choice Question (MCQ), carry TWO mark each (for each wrong answer: - 2/3).

Q. 6	The CORRECT order of acidity of the following compounds is
(A)	II $>$ I $>$ III
(B)	II $>$ III $>$ I
(C)	III $>$ II $>$ I
(D)	III $>$ I $>$ II

Q. 7	The $\mathbf{O - O}$ bond order in $\mathbf{O}_{2}{ }^{2-}$ species is
(A)	0.5
(B)	1.0
(C)	1.5
(D)	2.0

Graduate Aptitude Test in Engineering 2021 Organising Institute - IIT Bombay

Chemistry (XL-P)

Q. 8	For a reaction, Group I contains three plot time, where $x=$ concentrati reactant X at initial time, t reaction. Match the plots w Group I (P) (Q) (R)	ations as functions of $t ; x_{0}=$ concentration of ist of different orders of action. Group II (1) Zero order (2) First order (3) Second order
(A)	(P) - (1), (Q) - (2), (R) - (3)	
(B)	(P) - (3), (Q) - (2), (R) - (1)	
(C)	(P) - (2), (Q) - (3), (R) - (1)	
(D)	(P) - (2), (Q) - (1), (R) - (3)	

Chemistry (XL-P)
Q. 9 The structure of the major product S of the following reaction is

Graduate Aptitude Test in Engineering 2021 Organising Institute - IIT Bombay
Q. 10 - Q. 11 Multiple Select Question (MSQ), carry TWO mark each (no negative marks).

Q. 10	The CORRECT combination(s) of Y and T for the following elimination reaction is(are)
(A)	$\mathrm{Y}=\stackrel{\oplus}{\mathrm{NMe}}{ }_{3} \text { and } \mathbf{T}=\mathrm{Me} \mathrm{Me}$
(B)	$\mathrm{Y}=\stackrel{\oplus}{\mathrm{NMe}} \mathrm{Me}_{3} \text { and } \mathbf{T}=\mathrm{Me}$
(C)	$\mathrm{Y}=\mathrm{Br}$ and $\mathbf{T}=\mathrm{Me}$
(D)	$\mathrm{Y}=\mathrm{Br}$ and $\mathbf{T}=\mathrm{Me} \sim_{\mathrm{Me}}$

Q. 11	Among the following, the diamagnetic species is(are) (Given: Atomic numbers of $\mathbf{F e}=\mathbf{2 6}, \mathbf{C o}=\mathbf{2 7}$, and $\mathbf{N i}=\mathbf{2 8})$
(A)	$\left[\mathrm{CoF}_{6}\right]^{3-}$
(B)	$\left[\mathrm{Ni}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$
(C)	$\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{4-}$
(D)	$\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}$

Graduate Aptitude Test in Engineering 2021 Organising Institute - IIT Bombay
Q. 12 - Q. 15 Numerical Answer Type (NAT), carry TWO mark each (no negative marks).
Q. 12 Given the following standard heats of formation, $\Delta_{f} H^{\ominus}(\mathbf{P}, \mathrm{g})=314.6 \mathrm{~kJ}$ $\mathrm{mol}^{-1}, \Delta_{f} \mathrm{H}^{\ominus}\left(\mathrm{PH}_{3}, \mathrm{~g}\right)=5.4 \mathrm{~kJ} \mathrm{~mol}^{-1}$, and $\Delta_{f} \mathrm{H}^{\ominus}(\mathrm{H}, \mathrm{g})=218.0 \mathrm{~kJ} \mathrm{~mol}^{-1}$, the average bond enthalpy of a $\mathrm{P}-\mathrm{H}$ bond in $\mathrm{PH}_{3}(\mathrm{~g})$ is \qquad $\mathrm{kJ} \mathrm{mol}^{-1}$ (rounded off to one decimal place).
Q. 13 The total number of possible geometrical isomer(s) for $\left[\operatorname{PtBrCl}\left(\mathrm{NH}_{3}\right)(\mathrm{py})\right]^{0}$ is \qquad .
(Given: $\mathrm{py}=$ Pyridine and atomic number of $\mathrm{Pt}=78$)
Q. 14 Given the standard reduction potentials, $\mathrm{E}_{\mathrm{Mg}^{2+} / \mathrm{Mg}}^{\ominus}=-2.37 \mathrm{~V}$ and $\mathrm{E}_{\mathrm{Ag}^{+} / \mathrm{Ag}}^{\ominus}=\mathbf{0 . 8 0 ~ V}$, the potential of the following cell

$$
\mathbf{A g}^{+}(\text {aq. }, 1 \mathbf{m M})+\mathbf{M g}(\mathrm{s}) \rightleftharpoons \mathbf{A g}(\mathrm{s})+\mathbf{M g}^{2+}(\text { aq. }, \mathbf{0 . 2} \mathbf{~ M})
$$

at $25^{\circ} \mathrm{C}$ is \qquad V (rounded off to two decimal places).
(Given: Faraday constant $=\mathbf{9 6 5 0 0} \mathrm{C} \mathrm{mol}^{-1}$, Gas constant $\mathrm{R}=8.314 \mathrm{~J}$ $\mathbf{K}^{-1} \mathrm{~mol}^{-1}$)
Q. 15 The freezing point of 80 g of acetic acid (freezing point constant 3.9 K kg mol^{-1}) was lowered by 7.8 K due to the addition of 20 g of a compound. The molar mass of the compound is \qquad $\mathrm{g} \mathrm{mol}^{-1}$ (rounded off to closest integer).

END OF THE QUESTION PAPER

