

Materials Science (XE-C)

Q.1 – Q.7 Multiple Choice Question (MCQ), carry ONE mark each (for each wrong answer: -1/3).

Q.1	Condition to be satisfied for α and β phases to be in equilibrium in a two-component (A and B) system at constant temperature and pressure is (Given: μ is the chemical potential)	
(A)	entropy of the system should be maximum	
(B)	Gibbs energy of the system should be minimum and $\mu_A^{\alpha} = \mu_B^{\alpha}$, $\mu_A^{\beta} = \mu_B^{\beta}$	
(C)	Gibbs energy of the system should be minimum and $\mu_A^{\alpha} = \mu_A^{\beta}$, $\mu_B^{\alpha} = \mu_B^{\beta}$	
(D)	Helmholtz energy should be minimum	

Q.2	Amino acids react to form peptides and proteins. This process is known as	
(A)	addition polymerization	20
(B)	nucleophilic substitution	
(C)	condensation polymerization	12 6
(D)	hydration	1/0

Q.3	The most favoured slip system in face centered cubic metal is	
(A)	(111) [110]	
(B)	$(110)[1\overline{1}1]$	
(C)	$(11\overline{1})[112]$	
(D)	$(111)[1\overline{1}0]$	

Materials Science (XE - C)

Q.4	The dielectric constant of a material at ultraviolet frequencies is mainly due to	
(A)	dipolar polarizability	
(B)	ionic polarizability	
(C)	electronic polarizability	
(D)	interfacial polarizability	
Q.5		s/reactions in Column I with the most
	suitable information in Column II Column I	Column II
	Column I (P) Eutectoid reaction	Column II (1) involves no diffusion (2) one solid phase transforms into two
(A)	Column I (P) Eutectoid reaction (Q) Martensitic transformation	Column II (1) involves no diffusion (2) one solid phase transforms into two solid phases
(A) (B)	Column I (P) Eutectoid reaction (Q) Martensitic transformation (R) Precipitation reaction	Column II (1) involves no diffusion (2) one solid phase transforms into two solid phases
	Column I (P) Eutectoid reaction (Q) Martensitic transformation (R) Precipitation reaction P-2; Q-3; R-1	Column II (1) involves no diffusion (2) one solid phase transforms into two solid phases

Q.6	In scanning electron microscopy, the resolution of backscattered electron (BSE) image is poorer compared to that of secondary electron (SE) image, because	
(A)	energy of BSE is lower	
(B)	sampling volume of BSE is larger	
(C)	yield of BSE is lower	
(D)	sampling volume of SE is larger	

Materials Science (XE - C)

Q.7	Which of the following deposition conditions favour the formation of larger grains in thin film?	
(A)	Low deposition rate and low substrate temperature	
(B)	Low deposition rate and high substrate temperature	
(C)	High deposition rate and low substrate temperature	
(D)	High deposition rate and high substrate temperature	

Materials Science (XE - C)

Q.8 Multiple Select Question (MSQ), Carry ONE mark each (no negative marks).

Q.8	A metal has a melting point of 600 °C. By rapid cooling, liquid metal can be made to solidify either at 500 °C or 400 °C or 300 °C. Critical size of the solid nuclei is	
(A)	same for solidification at 400 °C and 500 °C	
(B)	smaller for solidification at 400 °C as compared to solidification at 500 °C	
(C)	larger for solidification at 400 °C as compared to solidification at 500 °C	
(D)	the smallest for solidification at 300 °C	

Materials Science (XE - C)

Q.9 Numerical Answer Type (NAT), carry ONE mark each (no negative marks).

Q.9	A magnet of mass 50 g has a magnetic moment of 4.2×10^{-7} A m ² . The density of the magnet is 7.2 g cm ⁻³ . The intensity of magnetization in A m ⁻¹ is (round off to 3 decimal places)

Q. 10-Q. 12 Multiple Choice Question (MCQ), carry TWO marks each (for each wrong answer: -2/3).

Q.10	In the context of scanning electron microscopy, match the information in Column I with most appropriate information in Column II .		
	Column I	Column II	
	(P) Secondary electrons	(1) Crystallographic orientation of grains	
	(Q) Backscattered electrons	(2) Failure analysis of fractured surfaces(3) Chemical composition analysis	
	(R) Characteristic X-rays	(4) Distinguishing chemically distinct phases	
	(S) Diffracted backscattered electrons		
(A)	P-3; Q-2; R-1; S-4		
(B)	P-2; Q-4; R-3; S-1		
(C)	P-1; Q-3; R-2; S-4	11/17	
(D)	P-4; Q-2; R-1; S-3		

Q.11	Match the heat treatment processes given in Column I with the most suitable outcomes in Column II .	
	Column I	Column II (1) hardens the steel
	(P) Quenching (Q) Annealing	(2) softens the cold worked steel(3) toughens the steel
)	(R) Tempering (S) Carburizing	(4) hardens the surface of steel
(A)	P-3; Q-2; R-1; S-4	
(B)	P-2; Q-4; R-3; S-1	L=1/1/1/
(C)	P-1; Q-2; R-3; S-4	
(D)	P-1; Q-3; R-4; S-2	

Q.12	A co-joined cross-ply laminate composite, as shown in figure, is distorted upon heating. What are the resultant shapes of edges XY and YZ?
	X Constitution of the second o
2	Ceramic liber V Polymer matrix
(A)	x — Y, Y \(\sum_Z \)
(B)	X — Y, Y
(C)	X
(D)	x ~ Y, Y ~ Z

Q. 13 Multiple Select Question (MSQ), Carry TWO marks each (no negative marks).

Q.13	X-ray diffraction peak broadening enables the estimation of	
(A)	crystallite size of the material	
(B)	microstrain in the material	
(C)	precise lattice parameter	
(D)	residual macrostress acting on the material	

Materials Science (XE - C)

Q. 14 - Q. 22 Numerical Answer Type (NAT), carry TWO marks each (no negative marks).

Materials Science (XE - C)

Q.19	The drift mobility of electron in an n-type Si crystal doped with 10^{16} cm ⁻³ phosphorous atoms is 1350 cm ² V ⁻¹ s ⁻¹ . The electrical conductivity in Ω^{-1} m ⁻¹ is (round off to nearest integer)
	(Given: Intrinsic charge concentration of $Si = 1.45 \times 10^{10} \text{ cm}^{-3}$;
	Charge of an electron, $e = 1.6 \times 10^{-19} \text{ C}$
Q.20	At 1000 K, the linear thermal expansion coefficients of graphite, parallel and perpendicular to the graphite layers, are 0.8×10^{-6} K $^{-1}$ and 29×10^{-6} K $^{-1}$, respectively. The percentage increase in the volume of graphite when heated from 900 K to 1100 K is (round off to 2 decimal places)
Q.21	A certain ceramic has a theoretical density and sintered density of 6.76 g cm ⁻³ and 6.60 g cm ⁻³ , respectively. The green compact has 18 volume percent porosity. For a sintered cube of side 2 cm, the required side of the cubic green compact in cm is (round off to 2 decimal places)
Q.22	When a metal (M) is immersed in de-aerated acid electrolyte, it polarizes anodically by 0.4 V. The M/Mn+ exchange current density is 10^{-5} A m ⁻² and Tafel slope is 0.1 V/decade for the anodic reaction. Assume that corrosion is uniform and, anodic and cathodic reactions are under activation control. The rate of metal dissolution in A m ⁻² is (round off to 1 decimal place)

END OF THE QUESTION PAPER