GATE 2022 General Aptitude (GA)

Q. 1 - Q. 5 Carry ONE mark each.

Q. 1	Mr. X speaks___ Chi____ Chepanese.
(A)	neither / or
(B)	either / nor
(C)	neither / nor
(D)	also / but

Q.2	A sum of money is to be distributed among $\mathrm{P}, \mathrm{Q}, \mathrm{R}$, and S in the proportion $5: 2: 4: 3$, respectively. If R gets ₹ 1000 more than S, what is the share of Q (in ₹)?
(A)	500
(B)	1000
(C)	1500
(D)	2000

| QATE |
| :--- | :--- | :--- |
| Q.3 A trapezium has vertices marked as $\mathrm{P}, \mathrm{Q}, \mathrm{R}$ and S (in that order anticlockwise).
 The side PQ is parallel to side SR.
 Further, it is given that, $\mathrm{PQ}=11 \mathrm{~cm}, \mathrm{QR}=4 \mathrm{~cm}, \mathrm{RS}=6 \mathrm{~cm}$ and $\mathrm{SP}=3 \mathrm{~cm}$.
 What is the shortest distance between PQ and SR (in cm)?
 (A) 1.80
 (B) 2.40
 (C) 4.20
 (D) 5.76 |

Q.4 4 The figure shows a grid formed by a collection of unit squares. The unshaded	
unit square in the grid represents a hole.	
(A)	15
(B)	20
(C)	21
(D)	26

GATE	Graduate Aptitude Test in Engineering Organised by Indian Institute of Technology Kharagpur
Q. 5	An art gallery engages a security guard to ensure that the items displayed are protected. The diagram below represents the plan of the gallery where the boundary walls are opaque. The location the security guard posted is identified such that all the inner space (shaded region in the plan) of the gallery is within the line of sight of the security guard. If the security guard does not move around the posted location and has a 360° view, which one of the following correctly represents the set of ALL possible locations among the locations $\mathrm{P}, \mathrm{Q}, \mathrm{R}$ and S , where the security guard can be posted to watch over the entire inner space of the gallery.
(A)	P and Q
(B)	Q
(C)	Q and S
(D)	R and S

Q. 6 - Q. 10 Carry TWO marks each.

Q.6	Mosquitoes pose a threat to human health. Controlling mosquitoes using chemicals may have undesired consequences. In Florida, authorities have used genetically modified mosquitoes to control the overall mosquito population. It remains to be seen if this novel approach has unforeseen consequences. Which one of the following is the correct logical inference based on the information in the above passage?
(A)	Using chemicals to kill mosquitoes is better than using genetically modified mosquitoes because genetic engineering is dangerous
(B)	Using genetically modified mosquitoes is better than using chemicals to kill mosquitoes because they do not have any side effects
(C)	Both using genetically modified mosquitoes and chemicals have undesired consequences and can be dangerous
(D)	Using chemicals to kill mosquitoes may have undesired consequences but it is not clear if using genetically modified mosquitoes has any negative consequence

Q. 7	Consider the following inequalities. (i) $2 x-1>7$ (ii) $2 x-9<1$ Which one of the following expressions below satisfies the above two inequalities?
(A)	$x \leq-4$
(B)	$-4<x \leq 4$
(C)	$4<x<5$
(D)	$x \geq 5$

Q.8	Four points $\mathrm{P}(0,1), \mathrm{Q}(0,-3), \mathrm{R}(-2,-1)$, and $\mathrm{S}(2,-1)$ represent the vertices of a quadrilateral. What is the area enclosed by the quadrilateral?
(A)	4
(B)	$4 \sqrt{2}$
(C)	8
(D)	$8 \sqrt{2}$

\square Graduate Aptitude Test in Engineering $\left\lvert\, \begin{aligned} & \text { Organised by } \\ & \text { Indan Institute of Technology Kharagour }\end{aligned}\right.$
\(\left.$$
\begin{array}{|l|l|}\hline \text { Q.9 } & \begin{array}{l}\text { In a class of five students P, Q, R, S and T, only one student is known to have } \\
\text { copied in the exam. The disciplinary committee has investigated the situation } \\
\text { and recorded the statements from the students as given below. } \\
\text { Statement of P: R has copied in the exam. } \\
\text { Statement of Q: S has copied in the exam. } \\
\text { Statement of R: P did not copy in the exam. } \\
\text { Statement of } \mathbf{S}: \text { Only one of us is telling the truth. }\end{array}
$$

Statement of \mathbf{T}: R is telling the truth.

The investigating team had authentic information that \mathrm{S} never lies.

Based on the information given above, the person who has copied in the exam is\end{array}\right\}\)| (A) | R |
| :--- | :--- |
| (B) | P |
| (D) | Q |

$\left.\begin{array}{|l|l|}\hline \text { Q. } 10 & \begin{array}{l}\text { Consider the following square with the four corners and the } \\ \text { center marked as P, Q, R, S and T respectively. } \\ \text { Let } \mathrm{X}, \mathrm{Y} \text { and } \mathrm{Z} \text { represent the following operations: } \\ \text { S-Q axis. } \\ \text { Y: rotation of the square by } 180 \text { degree with respect to the P-R axis. } \\ \text { Z: rotation of the square by } 90 \text { degree clockwise with respect to the axis } 180 \text { degree with respect to the } \\ \text { perpendicular, going into the screen and passing through the point T. } \\ \text { Consider the following three distinct sequences of operation (which are applied } \\ \text { in the left to right order). } \\ \text { (1) XYZZ } \\ \text { (2) XY } \\ \text { (3) ZZZZ } \\ \text { Which one of the following statements is correct as per the information } \\ \text { provided above? }\end{array} \\ \hline \text { (A) } & \begin{array}{l}\text { The sequence of operations (1) and (2) are equivalent }\end{array} \\ \hline \text { (B) } & \begin{array}{l}\text { The sequence of operations (1) and (3) are equivalent }\end{array} \\ \hline \text { The sequence of operations (1), (2) and (3) are equivalent }\end{array}\right\}$

GATE 2022 Statistics (ST)

Q. 11 - Q. 35 Carry ONE mark Each

Q.11	Let \boldsymbol{M} be a 2×2 real matrix such that $(\boldsymbol{I}+\boldsymbol{M})^{-1}=\boldsymbol{I}-\alpha \boldsymbol{M}$, where α is a non-zero real number and \boldsymbol{I} is the 2×2 identity matrix. If the trace of the matrix \boldsymbol{M} is 3, then the value of α is
(A)	$\frac{3}{4}$
(B)	$\frac{1}{3}$
(C)	$\frac{1}{2}$
(D)	$\frac{1}{4}$

GATE 2022 Statistics (ST)

Q. 12	Let $\{X(t)\}_{t \geq 0}$ be a linear pure death process with death rate $\mu_{i}=5 i, \quad i=0,1, \ldots, N, \quad N \geq 1$. Suppose that $p_{i}(t)=P(X(t)=i)$. Then the system of forward Kolmogorov's equations is
(A)	$\frac{d p_{i}(t)}{d t}=5(i+1) p_{i+1}(t)+5 i p_{i}(t) \quad \text { and } \quad \frac{d p_{N}(t)}{d t}=5 N p_{N}(t)$ for $i=0,1,2, \ldots, N-1$ with initial conditions $p_{i}(0)=0$ for $i \neq N$, and $p_{N}(0)=1$
(B)	$\frac{d p_{i}(t)}{d t}=5(i+1) p_{i+1}(t)-5 i p_{i}(t) \quad \text { and } \quad \frac{d p_{N}(t)}{d t}=-5 N p_{N}(t)$ for $i=0,1,2, \ldots, N-1$ with initial conditions $p_{i}(0)=0$ for $i \neq N$, and $p_{N}(0)=1$
(C)	$\frac{d p_{i}(t)}{d t}=5(i+1) p_{i+1}(t)+5 i p_{i}(t) \quad$ and $\quad \frac{d p_{N}(t)}{d t}=5 N p_{N}(t)$ for $i=0,1,2, \ldots, N-1$ with initial conditions $p_{i}(0)=1$ for $i \neq N$, and $p_{N}(0)=0$
(D)	$\frac{d p_{i}(t)}{d t}=5(i+1) p_{i+1}(t)-5 i p_{i}(t) \quad \text { and } \quad \frac{d p_{N}(t)}{d t}=-5 N p_{N}(t)$ for $i=0,1,2, \ldots, N-1$ with initial conditions $p_{i}(0)=1$ for $i \neq N$, and $p_{N}(0)=0$

GATE 2022 Statistics (ST)

Q. 13	Let S^{2} be the variance of a random sample of size $n>1$ from a normal population with an unknown mean μ and an unknown finite variance $\sigma^{2}>0$. Consider the following statements: (I) $\quad S^{2}$ is an unbiased estimator of σ^{2}, and S is an unbiased estimator of σ. (II) $\quad\left(\frac{n-1}{n}\right) S^{2}$ is a maximum likelihood estimator of σ^{2}, and $\sqrt{\frac{n-1}{n}} S$ is a maximum likelihood estimator of σ. Which of the above statements is/are true?
(A)	(I) only
(B)	(II) only
(C)	Both (I) and (II)
(D)	Neither (I) nor (II)

GATE 2022 Statistics (ST)
$\left.\left.\begin{array}{|l|l|}\hline \text { Q.14 } & \text { Let } f: \mathbb{R}^{2} \rightarrow \mathbb{R} \text { be a function defined by } \\ & f(x, y)=\left\{\begin{array}{cc|}\frac{x^{2} y}{x^{2}+y^{2}}, & (x, y) \neq(0,0), \\ 0,\end{array} \quad(x, y)=(0,0) .\right.\end{array}\right\} \begin{array}{ll|}\hline \text { Then which one of the following statements is true? }\end{array}\right\}$

GATE 2022 Statistics (ST)

Q.15	Let $X_{1}, X_{2}, \ldots, X_{n}$ be a random sample from a distribution with cumulative distribution function $F(x)$. Let the empirical distribution function of the sample be $F_{n}(x)$. The classical Kolmogorov-Smirnov goodness of fit test statistic is given by
$\qquad$$T_{n}=\sqrt{n} D_{n}=\sqrt{n} \sup _{-\infty<x<\infty}\left\|F_{n}(x)-F(x)\right\|$. (I) \quadThe distribution of T_{n} is the same for all continuous underlying distribution functions $F(x)$. D_{n} converges to 0 almost surely, as $n \rightarrow \infty$. Which of the above statements is/are true?	
(A)	(I) only (B) (II) only (D) Neth (I) and (II)

GATE 2022 Statistics (ST)

Q.16	Consider the following transition matrices $\boldsymbol{P}_{\mathbf{1}}$ and $\boldsymbol{P}_{\mathbf{2}}$ of two Markov chains: $\boldsymbol{P}_{\mathbf{1}}=\left[\begin{array}{ccc}1 & 0 & 0 \\ 1 / 3 & 1 / 2 & 1 / 6 \\ 0 & 0 & 1\end{array}\right] \quad$ and $\quad \boldsymbol{P}_{\mathbf{2}}=\left[\begin{array}{ccc}1 / 6 & 1 / 3 & 1 / 2 \\ 1 / 4 & 0 & 3 / 4 \\ 0 & 1 & 0\end{array}\right]$.
(A)	Both $\boldsymbol{P}_{\mathbf{1}}$ and $\boldsymbol{P}_{\mathbf{2}}$ have unique stationary distributions on the following statements is true?
(B)	$\boldsymbol{P}_{\mathbf{1}}$ has a unique stationary distribution, but $\boldsymbol{P}_{\mathbf{2}}$ has infinitely many stationary distributions
(C)	$\boldsymbol{P}_{\mathbf{1}}$ has infinitely many stationary distributions, but $\boldsymbol{P}_{\mathbf{2}}$ has a unique stationary distribution
(D)	Neither $\boldsymbol{P}_{\mathbf{1}}$ nor $\boldsymbol{P}_{\mathbf{2}}$ has unique stationary distribution

GATE 2022 Statistics (ST)

Q. 17	Let $\boldsymbol{X}_{1}, \boldsymbol{X}_{2}, \ldots, \boldsymbol{X}_{\mathbf{2 0}}$ be a random sample of size 20 from $\mathrm{N}_{6}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$, with $\operatorname{det}(\boldsymbol{\Sigma}) \neq 0$, and suppose both $\boldsymbol{\mu}$ and $\boldsymbol{\Sigma}$ are unknown. Let $\overline{\boldsymbol{X}}=\frac{1}{20} \sum_{i=1}^{20} \boldsymbol{X}_{i} \quad \text { and } \quad \boldsymbol{S}=\frac{1}{19} \sum_{i=1}^{20}\left(\boldsymbol{X}_{i}-\overline{\boldsymbol{X}}\right)\left(\boldsymbol{X}_{i}-\overline{\boldsymbol{X}}\right)^{T}$ Consider the following two statements: (I) The distribution of $19 \boldsymbol{S}$ is $W_{6}(19, \boldsymbol{\Sigma})$ (Wishart distribution of order 6 with 19 degrees of freedom). (II) The distribution of $\left(\boldsymbol{X}_{\mathbf{3}}-\boldsymbol{\mu}\right)^{T} \boldsymbol{S}^{-1}\left(\boldsymbol{X}_{\mathbf{3}}-\boldsymbol{\mu}\right)$ is $\quad \chi_{6}^{2} \quad$ (Chi-square distribution with 6 degrees of freedom). Then which of the above statements is/are true?
(A)	(I) only
(B)	(II) only
(C)	Both (I) and (II)
(D)	Neither (I) nor (II)

GATE 2022 Statistics (ST)
\(\left.$$
\begin{array}{|l|l|}\hline \text { Q.18 } & \begin{array}{l}\text { Let } X_{1}, X_{2}, \ldots, X_{18} \text { be a random sample from the distribution } \\
\qquad\end{array} \\
& \begin{array}{l}\text { Let } \chi_{\alpha, n}^{2} \text { denote the value of a Chi-square random variable } Y \text { with } n \text { degrees of } \\
\text { freedom such that } P\left(Y>\chi_{\alpha, n}^{2}\right)=\alpha . \text { If } x_{1}, x_{2}, \ldots, x_{18} \text { is a realization of this random } \\
\text { sample, then, based on the sufficient statistic } \sum_{i=1}^{18} X_{i}^{2}, \text { which one of the following } \\
\text { is a } 98 \% \text { confidence interval for } \theta \text { ? }\end{array}
$$

\hline (A) \& x>0,\end{array}\right\}\)| $\left(\frac{2 \sum_{i=1}^{18} x_{i}^{2}}{\left.\chi_{0.01,36}^{2}, \frac{2 \sum_{i=1}^{18} x_{i}^{2}}{\chi_{0.99,36}^{2}}\right)}\right.$ |
| :--- |
| (B) |
| $\left(\frac{2 \sum_{i=1}^{18} x_{i}^{2}}{\left.\chi_{0.01,18}^{2}, \frac{2 \sum_{i=1}^{18} x_{i}^{2}}{\chi_{0.99,18}^{2}}\right)}\right.$ |
| (C) |
| $\left(\frac{\sum_{i=1}^{18} x_{i}^{2}}{\left.\chi_{0.01,36}^{2}, \frac{\sum_{i=1}^{18} x_{i}^{2}}{\chi_{0.99,36}^{2}}\right)}\right.$ |
| (D) |
| $\left(\frac{\sum_{i=1}^{18} x_{i}^{2}}{\left.\chi_{0.01,18}^{2}, \frac{\sum_{i=1}^{18} x_{i}^{2}}{\chi_{0.99,18}^{2}}\right)}\right.$ |

GATE 2022 Statistics (ST)

Q. 19	Let $X_{1}, X_{2}, \ldots, X_{n}$ be a random sample from a population $f(x ; \theta)$, where θ is a parameter. Then which one of the following statements is NOT true?
(A)	$\sum_{i=1}^{n} X_{i}$ is a complete and sufficient statistic for θ, if $f(x ; \theta)=\frac{e^{-\theta} \theta^{x}}{x!}, x=0,1,2, \ldots, \text { and } \theta>0$
(B)	($\sum_{i=1}^{n} X_{i}, \sum_{i=1}^{n} X_{i}^{2}$) is a complete and sufficient statistic for θ, if $f(x ; \theta)=\frac{1}{\sqrt{2 \pi} \theta} e^{-\frac{1}{2 \theta^{2}}(x-\theta)^{2}},-\infty<x<\infty, \theta>0$
(C)	$f(x ; \theta)=\theta x^{\theta-1}, 0<x<1, \theta>0$ has monotone likelihood ratio property in $\prod_{i=1}^{n} X_{i}$
(D)	$X_{(n)}-X_{(1)}$ is ancillary statistic for θ if $f(x ; \theta)=1,0<\theta<x<\theta+1$, where $X_{(1)}=\min \left\{X_{1}, X_{2}, \ldots, X_{n}\right\}$ and $X_{(n)}=\max \left\{X_{1}, X_{2}, \ldots, X_{n}\right\}$

GATE 2022 Statistics (ST)

Q.20	A random sample $X_{1}, X_{2}, \ldots, X_{6}$ of size 6 is taken from a Bernoulli distribution with the parameter θ. The null hypothesis $H_{0}: \theta=\frac{1}{2}$ is to be tested against the alternative hypothesis $H_{1}: \theta>\frac{1}{2}$, based on the statistic $Y=\sum_{i=1}^{6} X_{i}$. If the value of Y corresponding to the observed sample values is 4, then the p-value of the test statistic is
(A)	$\frac{21}{32}$
(B)	$\frac{9}{64}$
(C)	$\frac{11}{32}$
(D)	$\frac{7}{64}$

GATE 2022 Statistics (ST)

Q. 21	Let $\left\{a_{n}\right\}_{n=1}^{\infty}$ be a sequence of positive real numbers satisfying $\frac{8}{a_{n+1}}=\frac{7}{a_{n}}+\frac{a_{n}^{2}}{343}, \quad n \geq 1$ with $a_{1}=3$ and $a_{n}<7$ for all $n \geq 2$. Consider the following statements: (I) $\left\{a_{n}\right\}$ is monotonically increasing. (II) $\quad\left\{a_{n}\right\}$ converges to a value in the interval [3, 7]. Then which of the above statements is/are true?
(A)	(I) only
(B)	(II) only
(C)	Both (I) and (II)
(D)	Neither (I) nor (II)
Q. 22	Let \boldsymbol{M} be any square matrix of arbitrary order n such that $\boldsymbol{M}^{2}=\mathbf{0}$ and the nullity of \boldsymbol{M} is 6 . Then the maximum possible value of n (in integer) is \qquad

GATE 2022 Statistics (ST)

Q. 23	Consider the usual inner product in \mathbb{R}^{4}. Let $\boldsymbol{u} \in \mathbb{R}^{4}$ be a unit vector orthogonal to the subspace $S=\left\{\left(x_{1}, x_{2}, x_{3}, x_{4}\right)^{T} \in \mathbb{R}^{4} \mid x_{1}+x_{2}+x_{3}+x_{4}=0\right\} .$ If $\boldsymbol{v}=(1,-2,1,1)^{T}$, and the vectors \boldsymbol{u} and $\boldsymbol{v}-\alpha \boldsymbol{u}, \alpha \in \mathbb{R}$, are orthogonal, then the value of α^{2} (rounded off to two decimal places) is equal to \qquad
Q. 24	Let $\{B(t)\}_{t \geq 0}$ be a standard Brownian motion and let $\Phi(\cdot)$ be the cumulative distribution function of the standard normal distribution. If $P((B(2)+2 B(3))>1)=1-\Phi\left(\frac{1}{\sqrt{\alpha}}\right), \quad \alpha>0,$ then the value of α (in integer) is equal to
Q. 25	Let X and Y be two independent exponential random variables with $E\left(X^{2}\right)=\frac{1}{2}$ and $E\left(Y^{2}\right)=\frac{2}{9}$. Then $P(X<2 Y)$ (rounded off to two decimal places) is equal to \qquad
Q. 26	Let X be a random variable with the probability mass function $p_{X}(x)=\left(\frac{3}{4}\right)^{x-1}\left(\frac{1}{4}\right)$, $x=1,2,3, \ldots$. Then the value of $\sum_{n=0}^{\infty} P(n<X \leq n+3)$ (rounded off to two decimal places) is equal to \qquad

GATE 2022 Statistics (ST)

Q. 27	Let $X_{i}, i=1,2, \ldots, n$, be i.i.d. random variables from a normal distribution with mean 1 and variance 4 . Let $S_{n}=X_{1}^{2}+X_{2}^{2}+\cdots+X_{n}^{2}$. If $\operatorname{Var}\left(S_{n}\right)$ denotes the variance of S_{n}, then the value of $\lim _{n \rightarrow \infty}\left(\frac{\operatorname{Var}\left(S_{n}\right)}{n}-\left(\frac{E\left(S_{n}\right)}{n}\right)^{2}\right)$ (in integer) is equal to \qquad
Q. 28	At a telephone exchange, telephone calls arrive independently at an average rate of 1 call per minute, and the number of telephone calls follows a Poisson distribution. Five time intervals, each of duration 2 minutes, are chosen at random. Let p denote the probability that in each of the five time intervals at most 1 call arrives at the telephone exchange. Then $e^{10} p$ (in integer) is equal to \qquad
Q. 29	Let X be a random variable with the probability density function $f(x)= \begin{cases}c(x-[x]), & 0<x<3 \\ 0, & \text { elsewhere }\end{cases}$ where c is a constant and $[x]$ denotes the greatest integer less than or equal to x. If $A=\left[\frac{1}{2}, 2\right]$, then $P(X \in A)$ (rounded off to two decimal places) is equal to \qquad

GATE 2022 Statistics (ST)

Q.30	Let X and Y be two random variables such that the moment generating function of

where $t \in(-h, h), h>0$. If the mean and the variance of X are $\frac{1}{2}$ and $\frac{1}{4}$, respectively, then the variance of Y (in integer) is equal to \qquad
Q. 31 Let $X_{i, i}=1,2, \ldots n$, be i.i.d. random variables with the probability density function

$$
f_{X}(x)= \begin{cases}\frac{1}{\sqrt{2} \Gamma\left(\frac{1}{6}\right)} x^{-5 / 6} e^{-x / 8}, & 0<x<\infty \\ 0, & \text { elsewhere }\end{cases}
$$

where $\Gamma(\cdot)$ denotes the gamma function. Also, let $\bar{X}_{n}=\frac{1}{n}\left(X_{1}+X_{2}+\cdots+X_{n}\right)$. If $\sqrt{n}\left(\bar{X}_{n}\left(3-\bar{X}_{n}\right)-\frac{20}{9}\right)$ converges to $\mathrm{N}\left(0, \sigma^{2}\right)$ in distribution, then σ^{2} (rounded off to two decimal places) is equal to \qquad
Q. 32 Consider a Poisson process $\{X(t), t \geq 0\}$. The probability mass function of $X(t)$ is given by

$$
f(t)=\frac{e^{-4 t}(4 t)^{n}}{n!}, \quad n=0,1,2, \ldots
$$

If $C\left(t_{1}, t_{2}\right)$ is the covariance function of the Poisson process, then the value of $C(5,3)$ (in integer) is equal to \qquad

GATE 2022 Statistics (ST)

Q. 33	A random sample of size 4 is taken from the distribution with the probability density function $f(x ; \theta)= \begin{cases}\frac{2(\theta-x)}{\theta^{2}}, & 0<x<\theta \\ 0, & \text { elsewhere }\end{cases}$ If the observed sample values are $6,5,3,6$, then the method of moments estimate (in integer) of the parameter θ, based on these observations, is \qquad
Q. 34	A company sometimes stops payments of quarterly dividends. If the company pays the quarterly dividend, the probability that the next one will be paid is 0.7 . If the company stops the quarterly dividend, the probability that the next quarterly dividend will not be paid is 0.5 . Then the probability (rounded off to three decimal places) that the company will not pay quarterly dividend in the long run is \qquad
Q. 35	Let $X_{1}, X_{2}, \ldots, X_{8}$ be a random sample taken from a distribution with the probability density function $f_{X}(x)= \begin{cases}\frac{x}{8}, & 0<x<4 \\ 0, & \text { elsewhere }\end{cases}$ Let $F_{8}(x)$ be the empirical distribution function of the sample. If α is the variance of $F_{8}(2)$, then 128α (in integer) is equal to \qquad

GATE

GATE 2022 Statistics (ST)

Q. 36 - Q. 65 Carry TWO marks Each

Q.36	Let \boldsymbol{M} be a 3×3 real symmetric matrix with eigenvalues $-1,1,2$ and the corresponding unit eigenvectors $\boldsymbol{u}, \boldsymbol{v}, \boldsymbol{w}$, respectively. Let \boldsymbol{x} and \boldsymbol{y} be two vectors in \mathbb{R}^{3} such that $\boldsymbol{M} \boldsymbol{x}=\boldsymbol{u}+2(\boldsymbol{v}+\boldsymbol{w}) \quad$ and $\boldsymbol{M}^{2} \boldsymbol{y}=\boldsymbol{u}-(\boldsymbol{v}+2 \boldsymbol{w})$. Considering the usual inner product in \mathbb{R}^{3}, the value of $\|\boldsymbol{x}+\boldsymbol{y}\|^{2}$, where $\|\boldsymbol{x}+\boldsymbol{y}\|$ is the length of the vector $\boldsymbol{x}+\boldsymbol{y}$, is
(A)	1.25
(B)	0.25
(C)	0.75
(D)	1

GATE 2022 Statistics (ST)

Q. 37	Consider the following infinite series: $S_{1}:=\sum_{n=0}^{\infty}(-1)^{n} \frac{n}{n^{2}+4} \quad \text { and } \quad S_{2}:=\sum_{n=0}^{\infty}(-1)^{n}\left(\sqrt{n^{2}+1}-n\right)$ Which of the above series is/are conditionally convergent?
(A)	S_{1} only
(B)	S_{2} only
(C)	Both S_{1} and S_{2}
(D)	Neither S_{1} nor S_{2}
Q. 38	Let $(3,6)^{T},(4,4)^{T},(5,7)^{T}$ and $(4,7)^{T}$ be four independent observations from a bivariate normal distribution with the mean vector $\boldsymbol{\mu}$ and the covariance matrix $\boldsymbol{\Sigma}$. Let $\widehat{\boldsymbol{\mu}}$ and $\widehat{\boldsymbol{\Sigma}}$ be the maximum likelihood estimates of $\boldsymbol{\mu}$ and $\boldsymbol{\Sigma}$, respectively, based on these observations. Then $\widehat{\boldsymbol{\Sigma}} \widehat{\boldsymbol{\mu}}$ is equal to
(A)	$\binom{3.5}{10}$
(B)	$\binom{7.5}{4}$
(C)	$\binom{4}{13.5}$
(D)	$\binom{10}{3.5}$

GATE 2022 Statistics (ST)

Q. 39	Let $\boldsymbol{X}=\left(\begin{array}{l}X_{1} \\ X_{2} \\ X_{3}\end{array}\right)$ follow $\mathrm{N}_{3}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ with $\boldsymbol{\mu}=\left(\begin{array}{r}2 \\ -3 \\ 2\end{array}\right)$ and $\boldsymbol{\Sigma}=\left[\begin{array}{rrr}4 & -1 & 1 \\ -1 & 2 & a \\ 1 & a & 2\end{array}\right]$, where $a \in \mathbb{R}$. Suppose that the partial correlation coefficient between X_{2} and X_{3}, keeping X_{1} fixed, is $\frac{5}{7}$. Then a is equal to
(A)	1
(B)	$\frac{3}{2}$
(C)	2
(D)	$\frac{1}{2}$

GATE 2022 Statistics (ST)

Q.40	If the line $y=\alpha x, \alpha \geq \sqrt{2}$, divides the area of the region
	$R:=\left\{(x, y) \in \mathbb{R}^{2} \mid 0 \leq x \leq \sqrt{y}, 0 \leq y \leq 2\right\}$
into two equal parts, then the value of α is equal to	
(A)	$\frac{3}{\sqrt{2}}$
(B)	$2 \sqrt{2}$
(C)	$\sqrt{2}$
(D)	$\frac{5}{2 \sqrt{2}}$

GATE 2022 Statistics (ST)

Q.41	Let (X, Y, Z) be a random vector with the joint probability density function
	$f_{X, Y, Z}(x, y, z)= \begin{cases}\frac{1}{3}(2 x+3 y+z), & 0<x<1,0<y<1,0<z<1, \\ 0, & \text { elsewhere. }\end{cases}$ Then which one of the following points is on the regression surface of X on $(Y, Z) ?$ (A) $\left(\frac{4}{7}, \frac{1}{3}, \frac{1}{3}\right)$ (C) $\left(\frac{6}{7}, \frac{2}{3}, \frac{2}{3}\right)$ (D) $\left(\frac{1}{2}, \frac{1}{3}, \frac{2}{3}\right)$

GATE 2022 Statistics (ST)

Q. 42	A random sample X of size one is taken from a distribution with the probability density function $f(x ; \theta)= \begin{cases}\frac{2 x}{\theta^{2}}, & 0<x<\theta \\ 0, & \text { elsewhere }\end{cases}$ If $\frac{X}{\theta}$ is used as a pivot for obtaining the confidence interval for θ, then which one of the following is an 80% confidence interval (confidence limits rounded off to three decimal places) for θ based on the observed sample value $x=10$?
(A)	(10.541, 31.623)
(B)	(10.987, 31.126)
(C)	(11.345, 30.524)
(D)	(11.267, 30.542)

GATE 2022 Statistics (ST)

Q. 43	Let $X_{1}, X_{2}, \ldots, X_{7}$ be a random sample from a normal population with mean 0 and variance $\theta>0$. Let $K=\frac{X_{1}^{2}+X_{2}^{2}}{X_{1}^{2}+X_{2}^{2}+\cdots+X_{7}^{2}} .$ Consider the following statements: (I) The statistics K and $X_{1}^{2}+X_{2}^{2}+\cdots+X_{7}^{2}$ are independent. (II) $\frac{7 K}{2}$ has an F-distribution with 2 and 7 degrees of freedom. (III) $\quad E\left(K^{2}\right)=\frac{8}{63}$. Then which of the above statements is/are true?
(A)	(I) and (II) only
(B)	(I) and (III) only
(C)	(II) and (III) only
(D)	(I) only

GATE 2022 Statistics (ST)

Q. 44	Consider the following statements: (I) Let a random variable X have the probability density function $f_{X}(x)=\frac{1}{2} e^{-\|x\|}, \quad-\infty<x<\infty .$ Then there exist i.i.d. random variables X_{1} and X_{2} such that X and $X_{1}-X_{2}$ have the same distribution. (II) Let a random variable Y have the probability density function $f_{Y}(y)=\left\{\begin{array}{lr} \frac{1}{4}, & -2<y<2 \\ 0, & \text { elsewhere } \end{array}\right.$ Then there exist i.i.d. random variables Y_{1} and Y_{2} such that Y and $Y_{1}-Y_{2}$ have the same distribution. Then which of the above statements is/are true?
(A)	(I) only
(B)	(II) only
(C)	Both (I) and (II)
(D)	Neither (I) nor (II)

GATE 2022 Statistics (ST)

Q.45	Suppose $X_{1}, X_{2}, \ldots, X_{n}, \ldots$ are independent exponential random variables with the mean $\frac{1}{2}$. Let the notation i.o. denote 'infinitely often'. Then which of the following is/are true?
(A)	$P\left(\left\{X_{n}>\frac{\epsilon}{2} \log _{e} n\right\}\right.$ i.o. $)=1$ for $0<\epsilon \leq 1$
(B)	$P\left(\left\{X_{n}<\frac{\epsilon}{2} \log _{e} n\right\}\right.$ i.o. $)=1$ for $0<\epsilon \leq 1$
(C)	$P\left(\left\{X_{n}>\frac{\epsilon}{2} \log _{e} n\right\}\right.$ i.o. $)=1$ for $\epsilon>1$
(D)	$P\left(\left\{X_{n}<\frac{\epsilon}{2} \log _{e} n\right\}\right.$ i.o. $)=1$ for $\epsilon>1$

GATE 2022 Statistics (ST)

Q. 46	Let $\left\{X_{n}\right\}, n \geq 1$, be a sequence of random variables with the probability mass functions $p_{X_{n}}(x)=\left\{\begin{array}{lr} \frac{n}{n+1}, & x=0 \\ \frac{1}{n+1}, & x=n \\ 0, & \text { elsewhere } \end{array}\right.$ Let X be a random variable with $P(X=0)=1$. Then which of the following statements is/are true?
(A)	X_{n} converges to X in distribution
(B)	X_{n} converges to X in probability
(C)	$E\left(X_{n}\right) \longrightarrow E(X)$
(D)	There exists a subsequence $\left\{X_{n_{k}}\right\}$ of $\left\{X_{n}\right\}$ such that $X_{n_{k}}$ converges to X almost surely

GATE 2022 Statistics (ST)

Q. 47	Let \boldsymbol{M} be any 3×3 symmetric matrix with eigenvalues 1,2 and 3 . Let \boldsymbol{N} be any 3×3 matrix with real eigenvalues such that $\boldsymbol{M} \boldsymbol{N}+\boldsymbol{N}^{T} \boldsymbol{M}=3 \boldsymbol{I}$, where \boldsymbol{I} is the 3×3 identity matrix. Then which of the following cannot be eigenvalue(s) of the matrix \boldsymbol{N} ?
(A)	$\frac{1}{4}$
(B)	$\frac{3}{4}$
(C)	$\frac{1}{2}$
(D)	$\frac{7}{4}$
Q. 38	Let \boldsymbol{M} be a 3×2 real matrix having a singular value decomposition as $\boldsymbol{M}=\boldsymbol{U} \boldsymbol{S} \boldsymbol{V}^{T}$, where the matrix $\boldsymbol{S}=\left[\begin{array}{ccc}\sqrt{3} & 0 & 0 \\ 0 & 1 & 0\end{array}\right]^{T}, \boldsymbol{U}$ is a 3×3 orthogonal matrix, and \boldsymbol{V} is a 2×2 orthogonal matrix. Then which of the following statements is/are true?
(A)	The rank of the matrix \boldsymbol{M} is 1
(B)	The trace of the matrix $\boldsymbol{M}^{T} \boldsymbol{M}$ is 4
(C)	The largest singular value of the matrix $\left(\boldsymbol{M}^{T} \boldsymbol{M}\right)^{-1} \boldsymbol{M}^{T}$ is 1
(D)	The nullity of the matrix \boldsymbol{M} is 1

GATE 2022 Statistics (ST)

Q.49	Let X be a random variable such that where \mathbb{Z} denotes the set of all integers. If $\phi_{X}(t), t \in \mathbb{R}$, , denotes the characteristic function of X, then which of the following is/are true?
(A)	$\phi_{X}(a)=1$
(B)	$\phi_{X}(\cdot)$ is periodic with period a
(C)	$\left\|\phi_{X}(t)\right\|<1$ for all $t \neq a$
(D)	$\int_{0}^{2 \pi} e^{-i t n} \phi_{X}(t) d t=\pi P\left(X=\frac{2 \pi n}{a}\right), n \in \mathbb{Z}, i=\sqrt{-1}$
Q.50	Which of the following real valued functions is/are uniformly continuous on $[0, \infty) ?$ (A) $\sin 2 x$ (C) $\sin (\sin x)$
	$\sin (x \sin x)$

GATE 2022 Statistics (ST)

GATE 2022 Statistics (ST)

Q. 53	Suppose a random sample of size 3 is taken from a distribution with the probability density function $f(x)= \begin{cases}2 x, & 0<x<1 \\ 0, & \text { elsewhere }\end{cases}$ If p is the probability that the largest sample observation is at least twice the smallest sample observation, then the value of p (rounded off to three decimal places) is \qquad
Q. 54	Let a linear model $Y=\beta_{0}+\beta_{1} X+\epsilon$ be fitted to the following data, where ϵ is normally distributed with mean 0 and unknown variance $\sigma^{2}>0$. Let \hat{Y}_{0} denote the ordinary least-square estimator of Y at $X=6$, and the variance of of $\hat{Y}_{0}=c \sigma^{2}$. Then the value of the real constant c (rounded off to one decimal place) is equal to \qquad
Q. 55	Let $0,1,1,2,0$ be five observations of a random variable X which follows a Poisson distribution with the parameter $\theta>0$. Let the minimum variance unbiased estimate of $P(X \leq 1)$, based on this data, be α. Then $5^{4} \alpha$ (in integer) is equal to \qquad

GATE 2022 Statistics (ST)

Q. 56	While calculating Spearman's rank correlation coefficient, based on n observations $\left\{\left(x_{i}, y_{i}\right), i=1,2, \ldots, n\right\}$ from a paired data, it is found that x_{i} are distinct for all $i \geq 2, x_{1}=x_{2}$, and $\sum_{i=1}^{n} d_{i}^{2}=19.5$, where $d_{i}=\operatorname{rank}\left(x_{i}\right)-\operatorname{rank}\left(y_{i}\right)$. Then the minimum possible value of $n^{3}-n$ (in integer) is \qquad
Q. 57	In a laboratory experiment, the behavior of cats are studied for a particular food preference between two foods A and B. For an experiment, 70% of the cats that had food A will prefer food A, and 50% of the cats that had food B will prefer food A. The experiment is repeated under identical conditions. If 40% of the cats had food A in the first experiment, then the percentage (rounded off to one decimal place) of cats those will prefer food A in the third experiment, is \square
Q. 58	A random sample of size 5 is taken from a distribution with the probability density function $f(x ; \theta)= \begin{cases}\frac{3 x^{2}}{\theta^{3}}, & 0<x<\theta \\ 0, & \text { elsewhere }\end{cases}$ where θ is an unknown parameter. If the observed values of the random sample are $3,6,4,7,5$, then the maximum likelihood estimate of the $\frac{1}{8}$ th quantile of the distribution (rounded off to one decimal place) is \qquad

GATE 2022 Statistics (ST)

Q. 59	Consider a gamma distribution with the probability density function $f(x ; \beta)=\left\{\begin{array}{lc} \frac{1}{24 \beta^{5}} x^{4} e^{-x / \beta}, & x>0 \\ 0, & \text { elsewhere } \end{array}\right.$ with $\beta>0$. Then, for $\beta=2$, the value of the Cramer-Rao lower bound (rounded off to one decimal place) for the variance of any unbiased estimator of β^{2}, based on a random sample of size 8 from this distribution, is \qquad
Q. 60	Let $X_{1}, X_{2}, X_{3}, X_{4}$ be a random sample of size four from a Bernoulli distribution with the parameter $\theta, 0<\theta<1$. Consider the null hypothesis $H_{0}: \theta=\frac{1}{4}$ against the alternative hypothesis $H_{1}: \theta>\frac{1}{4}$. Suppose H_{0} is rejected if and only if $X_{1}+X_{2}+X_{3}+X_{4}>2$. If α is the probability of Type I error for the test and $\gamma(\theta)$ is the power function of the test, then the value of $16 \alpha+7 \gamma\left(\frac{1}{2}\right)$ (in integer) is equal to \qquad
Q. 61	Given that $\Phi(1.645)=0.95$ and $\Phi(2.33)=0.99$, where $\Phi(\cdot)$ denotes the cumulative distribution function of a standard normal random variable. For a random sample $X_{1}, X_{2}, \ldots, X_{n}$ from a normal population $\mathrm{N}\left(\mu, 2^{2}\right)$, where μ is unknown, the null hypothesis $H_{0}: \mu=10$ is to be tested against the alternative hypothesis $H_{1}: \mu=12$. Suppose that a test that rejects H_{0} if the sample mean \bar{X} is large, is used. Then the smallest value of n (in integer) such that Type I error is 0.05 and Type II error is at most 0.01 , is \qquad

GATE 2022 Statistics (ST)

Q. 62	Let $Y_{1}<Y_{2}<\cdots<Y_{n}$ be the order statistics of a random sample of size n from a continuous distribution, which is symmetric about its mean μ. Then the smallest value of n (in integer) such that $P\left(Y_{1}<\mu<Y_{n}\right) \geq 0.99$, is \qquad
Q. 63	If $P(x, y, z)$ is a point which is nearest to the origin and lies on the intersection of the surfaces $z=x y+5$ and $x+y+z=1$. Then the distance (in integer) between the origin and the point P is \qquad
Q. 64	Let X and Y be random variables such that X is uniformly distributed over $(0,4)$, and the conditional distribution of Y given $X=x$ is uniformly distributed over $\left(0, \frac{x^{2}}{4}\right)$. Then $E\left(Y^{2}\right)$ (rounded off to three decimal places) is equal to \qquad
Q. 65	Let $\boldsymbol{X}=\left(X_{1}, X_{2}, X_{3}\right)^{T}$ be a random vector with the distribution $\mathrm{N}_{3}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$, where $\boldsymbol{\mu}=\left(\begin{array}{l} 3 \\ 2 \\ 4 \end{array}\right) \quad \text { and } \quad \boldsymbol{\Sigma}=\left[\begin{array}{ccc} 4 & 2 & 1 \\ 2 & 3 & 0 \\ 1 & 0 & 2 \end{array}\right]$ Then $E\left(X_{1} \mid\left(X_{2}=4, X_{3}=7\right)\right.$ (in integer) is equal to \qquad

Q. No.	Session	Question Type	Subject Name	Key/Range	Mark
1	3	MCQ	GA	C	1
2	3	MCQ	GA	D	1
3	3	MCQ	GA	B	1
4	3	MCQ	GA	B	1
5	3	MCQ	GA	C	1
6	3	MCQ	GA	D	2
7	3	MCQ	GA	C	2
8	3	MCQ	GA	C	2
9	3	MCQ	GA	B	2
10	3	MCQ	GA	B	2
11	3	MCQ	ST	D	1
12	3	MCQ	ST	B	1
13	3	MCQ	ST	B	1
14	3	MCQ	ST	B	1
15	3	MCQ	ST	C	1
16	3	MCQ	ST	C	1
17	3	MCQ	ST	A	1
18	3	MCQ	ST	A	1
19	3	MCQ	ST	B	1
20	3	MCQ	ST	C	1
21	3	MCQ	ST	C	1
22	3	NAT	ST	12 to 12	1
23	3	NAT	ST	0.25 to 0.25	1
24	3	NAT	ST	22 to 22	1
25	3	NAT	ST	0.55 to 0.59	1
26	3	NAT	ST	2.30 to 2.32	1
27	3	NAT	ST	23 to 23	1
28	3	NAT	ST	243 to 243	1
29	3	NAT	ST	0.57 to 0.59	1
30	3	NAT	ST	1 to 1	1
31	3	NAT	ST	1.18 to 1.19	1
32	3	NAT	ST	12 to 12	1
33	3	NAT	ST	15 to 15	1
34	3	NAT	ST	0.375 to 0.375	1
35	3	NAT	ST	3 to 3	1
36	3	MCQ	ST	A	2
37	3	MCQ	ST	C	2
38	3	MCQ	ST	A	2
39	3	MCQ	ST	A	2
40	3	MCQ	ST	A	2
41	3	MCQ	ST	A	2
42	3	MCQ	ST	A	2
43	3	MCQ	ST	B	2
44	3	MCQ	ST	A	2

45	3	MSQ	ST	A, B, D	2
46	3	MSQ	ST	A, B, D	2
47	3	MSQ	ST	A, D	2
48	3	MSQ	ST	B, C	2
49	3	MSQ	ST	A, B	2
50	3	MSQ	ST	A, C	2
51	3	NAT	ST	15 to 15	2
52	3	NAT	ST	4.907 to 4.909	2
53	3	NAT	ST	0.436 to 0.439	2
54	3	NAT	ST	1.8 to 1.8	2
55	3	NAT	ST	512 to 512	2
56	3	NAT	ST	60 to 60	2
57	3	NAT	ST	61.5 to 61.7	2
58	3	NAT	ST	3.5 to 3.5	2
59	3	NAT	ST	1.6 to 1.6	2
60	3	NAT	ST	3 to 3	2
61	3	NAT	ST	16 to 16	2
62	3	NAT	ST	8 to 8	2
63	3	NAT	ST	3 to 3	2
64	3	NAT	ST	1.065 to 1.069	2
65	3	NAT	ST	6 to 6	2

