Q. 1 - Q. 5 Carry ONE mark each.

Q. 1	Inhaling the smoke from a burning________ you quickly.
(A)	tire / tier
(B)	tire / tyre
(C)	tyre / tire
(D)	tyre / tier

Q.2	A sphere of radius $r \mathrm{~cm}$ is packed in a box of cubical shape. What should be the minimum volume (in cm^{3}) of the box that can enclose the sphere?			
(A)	$\frac{r^{3}}{8}$	\quad	(B)	r^{3}
---:	:---			
(C)	$2 r^{3}$			
(D)	$8 r^{3}$			

Q.3	Pipes P and Q can fill a storage tank in full with water in 10 and 6 minutes, respectively. Pipe R draws the water out from the storage tank at a rate of 34 litres per minute. P, Q and R operate at a constant rate. If it takes one hour to completely empty a full storage tank with all the pipes operating simultaneously, what is the capacity of the storage tank (in litres)?
(A)	26.8
(B)	60.0
(C)	120.0
(D)	127.5

Q. 4	Six persons $\mathrm{P}, \mathrm{Q}, \mathrm{R}, \mathrm{S}, \mathrm{T}$ and U are sitting around a circular table facing the center not necessarily in the same order. Consider the following statements: - P sits next to S and T. - Q sits diametrically opposite to P . - The shortest distance between S and R is equal to the shortest distance between T and U . Based on the above statements, Q is a neighbor of
(A)	U and S
(B)	R and T
(C)	R and U
(D)	P and S

Q. 5	A building has several rooms and doors as shown in the top view of the building given below. The doors are closed initially. What is the minimum number of doors that need to be opened in order to go from the point P to the point Q? (A) (B) (C) (D)

Q. 6 - Q. 10 Carry TWO marks each.

Q.6	Rice, a versatile and inexpensive source of carbohydrate, is a critical component of diet worldwide. Climate change, causing extreme weather, poses a threat to sustained availability of rice. Scientists are working on developing Green Super Rice (GSR), which is resilient under extreme weather conditions yet gives higher yields sustainably. Which one of the following is the CORRECT logical inference based on the information given in the above passage?
(A)	GSR is an alternative to regular rice, but it grows only in an extreme weather
(B)	GSR may be used in future in response to adverse effects of climate change
(C)	GSR grows in an extreme weather, but the quantity of produce is lesser than regular rice
(D)	Regular rice will continue to provide good yields even in extreme weather

Q. 7	A game consists of spinning an arrow around a stationary disk as shown below. When the arrow comes to rest, there are eight equally likely outcomes. It could come to rest in any one of the sectors numbered $1,2,3,4,5,6,7$ or 8 as shown. Two such disks are used in a game where their arrows are independently spun. What is the probability that the sum of the numbers on the resulting sectors upon spinning the two disks is equal to 8 after the arrows come to rest?
(B)	

Q. 8	Consider the following inequalities. (i) $\quad 3 p-q<4$ (ii) $\quad 3 q-p<12$ Which one of the following expressions below satisfies the above two inequalities?
(A)	$p+q<8$
(B)	$p+q=8$
(C)	$8 \leq p+q<16$
(D)	$p+q \geq 16$

Q.9	Given below are three statements and four conclusions drawn based on the statements. Statement 1: Some engineers are writers. Statement 2: No writer is an actor. Statement 3: All actors are engineers.
	Conclusion I: Some writers are engineers. Conclusion III: No actor is a writer. Conclusion IV: Some actors are writers. Which one of the following options can be logically inferred?
(A)	Only conclusion I is correct
(B)	Only conclusion II and conclusion III are correct
(D)	Only conclusion I and conclusion III are correct

GATE	Graduate Aptitude Test in Engineering Organised by Indian Institute of Technology Kharagpur
Q. 10	Which one of the following sets of pieces can be assembled to form a square with a single round hole near the center? Pieces cannot overlap.
(A)	
(B)	
(C)	
(D)	

GATE 2022 Production and Industrial Engineering (PI)

Q. 11 - Q. 35 Carry ONE mark Each

GATE 2022 Production and Industrial Engineering (PI)

Q.13	Which one of the following metals has a face-centered cubic (FCC) structure?
(A)	Alpha iron
(B)	Chromium
(C)	Magnesium
(D)	Aluminum
Q.14	If G denotes the shear modulus of an isotropic material, then the maximum possible value of Young's modulus of the material is
(D)	4
(B)	$2 G$
	3
(D	

GATE 2022 Production and Industrial Engineering (PI)

GATE 2022 Production and Industrial Engineering (PI)

Q.16	In injection blow molding of plastic beverage bottles, the blowing is accomplished by
(A)	hot water
(B)	hot air
(C)	hot oil
(D)	alcohol
Q.17	In an electro-discharge machining process, the discharge voltage is V_{b}. The energy dissipated per spark across the inter-electrode gap is proportional to
(D)	V_{b}^{2}
(B)	V_{b}
(A)	$V_{\mathrm{b}}^{0.5}$

GATE 2022 Production and Industrial Engineering (PI)

GATE 2022 Production and Industrial Engineering (PI)

Q.20	Which one of the following statements is TRUE?
(A)	Concurrent engineering is a non-integrated approach for designing a product.
(B)	Concurrent engineering carries out all product development functions in a sequential manner.
(C)	Concurrent engineering reduces the lead time for the product development.
(D)	Concurrent engineering increases the lead time for the product development.

GATE 2022 Production and Industrial Engineering (PI)

GATE 2022 Production and Industrial Engineering (PI)

GATE 2022 Production and Industrial Engineering (PI)

GATE 2022 Production and Industrial Engineering (PI)

Q. 28	Yielding starts in a material when the principal stresses are $100 \mathrm{MPa}, 100 \mathrm{MPa}$ and 200 MPa . As per the von Mises criterion, yield stress (in MPa) of the material is \qquad . [round off to nearest integer]
Q. 29	A single-point cutting tool with zero rake angle is used for orthogonal machining. If the chip-compression ratio is 1.25 , then the shear angle (in degree) during machining is \qquad . [round off to one decimal place]
Q. 30	It is required to cut a single-start thread of 2 mm pitch in a lathe machine with a single-start lead screw of 4 mm pitch. For one revolution of the workpiece, the number of revolution of the lead screw is \qquad . [round off to two decimal places]
Q. 31	The absolute deviations of 8 points from the datum line of a surface are $10,15,12$, $10,13,12,20$ and $25 \mu \mathrm{~m}$. The root mean square value of the surface roughness (in $\mu \mathrm{m}$) is \qquad [round off to one decimal place]

Q 33	If the interarrival time is expenential and 8 customers per hour arrive in a bank then

the probability of no arrival of customer during a period of 15 minutes

Q. 34 A company buys a machine worth ₹ 65000 , which has a salvage value of ₹ 5000 . The annual depreciation cost is ₹ 10000 based on the straight line depreciation method. The useful life (in year) of the machine is \qquad . [in integer]

GATE 2022 Production and Industrial Engineering (PI)

| Q. 35 | A project comprises of seven activities. The expected durations of activities and
 their variances are as follows:
 \qquad
 \qquadActivity Expected duration
 (minute) Variance
 (minute)
 A 4
 B 5 1
 C 4
 D 1 1
 E 7
 F 6 1
 The critical path consists of activities B, E and G. The standard deviation (in minute)
 of the project duration is_[round off to two decimal places] |
| :---: | :--- | :--- | :--- |

Q. 36 - Q. 65 Carry TWO marks Each

Q.36	If a matrix is squared, then
(A)	both eigenvalues and eigenvectors must change
(B)	both eigenvalues and eigenvectors are retained
(C)	eigenvalues get squared but eigenvectors are retained
(D)	eigenvalues are retained but eigenvectors change

GATE 2022 Production and Industrial Engineering (PI)

Q.37	Consider the following ordinary differential equation:
	$4 \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}-4 \frac{\mathrm{~d} y}{\mathrm{~d} x}+y=0$.
Given that c_{1} and c_{2} are constants, the general solution of the differential equation	
is	
(A)	$y=\left(\mathrm{c}_{1}+\mathrm{c}_{2} x\right) \mathrm{e}^{x}$
(B)	$y=\mathrm{c}_{1} \mathrm{e}^{x / 2}+\mathrm{c}_{2} \mathrm{e}^{x}$
(C)	$y=\mathrm{c}_{1} \mathrm{e}^{x}+\mathrm{c}_{2} \mathrm{e}^{2 x}$
(D)	$y=\left(\mathrm{c}_{1}+\mathrm{c}_{2} x\right) \mathrm{e}^{x / 2}$

GATE 2022 Production and Industrial Engineering (PI)

Q.38	A market survey with a sample size of 1000 was conducted for a parameter that follows normal distribution. The confidence interval was estimated as [500, 700] with a mean of 600. It is now desired to reduce the confidence interval to [550,650]. The sample size for achieving the desired interval at the same confidence level is
(A)	1000
(B)	4000
(C)	9000
(D)	16000

GATE 2022 Production and Industrial Engineering (PI)

GATE 2022 Production and Industrial Engineering (PI)

Q. 40	In the three-member truss shown in the figure, $\mathrm{AC}=\mathrm{BC}$. An external force of 10 kN is applied at B , parallel to AC . The force in the member BC is
(A)	zero
(B)	10 kN (tensile)
(C)	10 kN (compressive)
(D)	7.07 kN (tensile)

Q.41 $\begin{aligned} & \text { Match the process } \\ & \text { their descriptions. }\end{aligned}$

| Processing step Description
 P Atomization 1 Blended powders are pressed into shapes using dies
 and pressure
 Q Sintering 2 A process for producing metal powder
 R Compaction 3 Metal powders are heated below their melting
 points to allow bonding
 S Infiltration 4 A slug of low melting point metal is placed in
 contact with the sintered part and heated
 5 Metal powders are heated significantly above their
 melting points for bonding | | |
| :--- | :--- | :--- | :--- |

(A)	P-1, Q-5, R-2, S-3
(B)	P-3, Q-2, R-1, S-5
(C)	P-2, Q-3, R-1, S-4
(D)	P-2, Q-5, R-1, S-4

GATE 2022 Production and Industrial Engineering (PI)

Q. 42	In an assembly comprising shaft and hole, the nominal sizes with tolerances are specified as Hole: $25.000_{-0.001}^{+0.002} \mathrm{~mm}$, Shaft: $25.000_{-0.003}^{+0.001} \mathrm{~mm}$. The type of fit is
(A)	Clearance fit
(B)	Interference fit
(C)	Transition fit
(D)	Running fit
Q. 43	In a manufacturing system, four different types of products ($\mathrm{P}, \mathrm{Q}, \mathrm{R}$ and S) are produced. The batch size of each product is 2×10^{7}. The numbers of defective units are $60,71,80$ and 55 , for $\mathrm{P}, \mathrm{Q}, \mathrm{R}$ and S , respectively. Which one of the following statements is TRUE?
(A)	All products conform to six sigma standard.
(B)	Only product S conforms to six sigma standard.
(C)	Except R, all other products conform to six sigma standard.
(D)	Products P and S conform to six sigma standard.

GATE 2022 Production and Industrial Engineering (PI)

GATE 2022 Production and Industrial Engineering (PI)

Q. 45	The value of $\lim _{x \rightarrow 1} \frac{x^{3}-3 x+2}{x^{3}-x^{2}-x+1}$ is \qquad . [round off to one decimal place]
Q. 46	A thick-cylinder has inner diameter of 20 mm and outer diameter of 40 mm . It is subjected to an internal pressure of 100 MPa . Follow the convention of taking tensile stress as positive and compressive stress as negative. The sum of radial and hoop stresses (in MPa) at a radius of 15 mm is \qquad . [round off to two decimal places]
Q. 47	A shaft is used to transmit a power of 10 kW . The shear yield stress of the material is 150 MPa and factor of safety is 2 . The shaft rotates at 1440 revolutions per minute. The diameter of the shaft (in mm) based on static strength is \qquad . [round off to two decimal places]
Q. 48	Air at an initial temperature and pressure of $15^{\circ} \mathrm{C}$ and 1 bar, respectively is heated in an irreversible process. The final temperature and pressure are $303^{\circ} \mathrm{C}$ and 2 bar, respectively. Take gas constant for air as $\mathrm{R}=287 \mathrm{~J} / \mathrm{kg}-\mathrm{K}$, the ratio of the specific heats as $\gamma=1.4$, and treat air as a calorically perfect gas. The change of entropy (in J/kg-K) in the process is \qquad . [round off to nearest integer]

GATE 2022 Production and Industrial Engineering (PI)

Q. 49	During a hot-working process, the homologous temperature is 0.8 . The melting point of the work metal is $800^{\circ} \mathrm{C}$. The temperature (in ${ }^{\circ} \mathrm{C}$) during hot-working is \qquad . [round off to nearest integer]
Q. 50	A workpiece of 30 mm diameter and 40 mm height is compressed between two platens in an open die forging process. Assume a perfectly plastic material with a flow stress of 300 MPa . The ideal forging load (in kN) at 30% reduction (in height) is \qquad . [round off to nearest integer]
Q. 51	In a gas tungsten arc welding process under steady state condition, the input voltage and current are measured as 18 V and 160 A , respectively. Heat loss during creation of arc is 40% of the input power. Heat loss through convection and radiation from the workpiece is 800 W . The effective power (in W) utilized to melt the workpiece is \qquad . [round off to nearest integer]
Q. 52	During straight turning of a 20 mm diameter steel bar at a spindle speed of 400 revolutions per minute (RPM) with an HSS tool, a tool life of 10 minute was observed. When the same bar was turned at 200 RPM, the tool life increased to 40 minute. The tool life (in minute) while machining the bar at 300 RPM is \qquad . [round off to nearest integer]

GATE 2022 Production and Industrial Engineering (PI)

Q. 53	A cylindrical workpiece is turned using two different tools. Tool 1 has zero nose radius; side and end cutting edge angles are 20° and 10°, respectively. Tool 2 has 0.5 mm nose radius. Both the tools machine at a feed of $0.2 \mathrm{~mm} / \mathrm{rev}$. The ratio of ideal maximum height of unevenness on the surface produced by Tool 1 to that produced by Tool 2 is \qquad . [round off to one decimal place]
Q. 54	For an electrochemical machining process $\frac{\mathrm{d} y}{\mathrm{~d} t}=\frac{\lambda}{y}-f,$ where y is the inter-electrode gap in mm at time t in minute, and f is the feed of the tool in $\mathrm{mm} /$ minute. The value of λ is $6 \times 10^{-3} \mathrm{~cm}^{2} /$ minute. For maintaining a constant inter-electrode gap of 0.1 mm , the feed (in $\mathrm{mm} /$ minute) should be \qquad [round off to one decimal place]
Q. 55	The worktable of an open loop positioning system is driven by a lead screw with a pitch of 4 mm . The lead screw is connected to the shaft of a stepper motor. A gear of 80 teeth mounted on the stepper motor shaft meshes with a gear of 20 teeth mounted on the lead screw. The step angle of the stepper motor is 9°. The number of pulses required to move the table by 200 mm is \qquad . [in integer]

GATE 2022 Production and Industrial Engineering (PI)

Q. 56	The diameter of a cylindrical cavity is measured by using two spherical steel balls of diameters 3 cm and 4 cm . The balls are placed inside the cavity such that the bigger ball is above the smaller one as shown in the figure. If the depth of cavity is 6 cm then the diameter (in cm) of cavity is decimal places]
[round off to two	

Sample No.	Number of defective items
1	4
2	10
3	5
4	6
5	5

The upper control limit of the defective item (in fraction defective) is \qquad . [round off to two decimal places]

GATE 2022 Production and Industrial Engineering (PI)

GATE 2022 Production and Industrial Engineering (PI)

GATE 2022 Production and Industrial Engineering (PI)

Q. 64	A company is planning to produce 24 electric cars per day. The setup cost of the plant is estimated as ₹ 19476 million and the variable cost is ₹ 0.6 million per car. The car will be sold at a price of ₹ 1.5 million. The number of days required for achieving the breakeven is \qquad . [round off to nearest integer]
Q. 65	A company forecasts the weekly demand of oxygen cylinders using exponential smoothing method with smoothing constant $\alpha=0.2$. The actual demands in Week 1, Week 2, Week 3 and Week 4 were 375, 412, 592 and 439 units, respectively. The forecasted demand for Week 3 was 500 units. The forecast (in unit) for the Week 5 is \qquad . [in integer]

Q. No.	Session	Question Type	Subject Name	Key/Range	Mark
1	4	MCQ	GA	C	1
2	4	MCQ	GA	D	1
3	4	MCQ	GA	C	1
4	4	MCQ	GA	C	1
5	4	MCQ	GA	C	1
6	4	MCQ	GA	B	2
7	4	MCQ	GA	D	2
8	4	MCQ	GA	A	2
9	4	MCQ	GA	C	2
10	4	MCQ	GA	C	2
11	4	MCQ	PI	C	1
12	4	MCQ	PI	C	1
13	4	MCQ	PI	D	1
14	4	MCQ	PI	C	1
15	4	MCQ	PI	A	1
16	4	MCQ	PI	B	1
17	4	MCQ	PI	C	1
18	4	MCQ	PI	B	1
19	4	MCQ	PI	C	1
20	4	MCQ	PI	C	1
21	4	MCQ	PI	A	1
22	4	MCQ	PI	A	1
23	4	NAT	PI	0 to 0	1
24	4	NAT	PI	1 to 1	1
25	4	NAT	PI	0.69 to 0.71	1
26	4	NAT	PI	119 to 121	1
27	4	NAT	PI	1995 to 2005	1
28	4	NAT	PI	99 to 101	1
29	4	NAT	PI	38.0 to 39.0	1
30	4	NAT	PI	0.40 to 0.60	1
31	4	NAT	PI	15.0 to 16.0	1
32	4	NAT	PI	0.96 to 0.98	1
33	4	NAT	PI	0.12 to 0.15	1
34	4	NAT	PI	6 to 6	1
35	4	NAT	PI	2.90 to 3.10	1
36	4	MCQ	PI	C	2
37	4	MCQ	PI	D	2
38	4	MCQ	PI	B	2
39	4	MCQ	PI	C	2
40	4	MCQ	PI	B	2
41	4	MCQ	PI	C	2
42	4	MCQ	PI	C	2
43	4	MCQ	PI	D	2
44	4	MCQ	PI	A	2

45	4	NAT	PI	1.4 to 1.6	2
46	4	NAT	PI	66.00 to 67.00	2
47	4	NAT	PI	16.00 to 17.00	2
48	4	NAT	PI	495 to 499	2
49	4	NAT	PI	584 to 586	2
50	4	NAT	PI	300 to 306	2
51	4	NAT	PI	926 to 930	2
52	4	NAT	PI	16 to 19	2
53	4	NAT	PI	2.9 to 3.7	2
54	4	NAT	PI	5.9 to 6.1	2
55	4	NAT	PI	498 to 502	2
56	4	NAT	PI	5.93 to 5.97	2
57	4	NAT	PI	0.15 to 0.18	2
58	4	NAT	PI	8570 to 8701	2
59	4	NAT	PI	160 to 160	2
60	4	NAT	PI	53 to 54	2
61	4	NAT	PI	40 to 40	2
62	4	NAT	PI	2190 to 2210	2
63	4	NAT	PI	7.9 to 8.1	2
64	4	NAT	PI	900 to 905	2
65	4	NAT	PI	500 to 505	2

