General Aptitude (GA)

Q. 1 - Q. 5 Carry ONE mark Each

Q. 1	The line ran ___ the page, right through the centre, and divided the page into two.
(A)	across
(B)	of
(C)	between
(D)	about

Q.2	Kind $: \ldots \quad: \quad$: Often : Seldom (By word meaning)
(A)	Cruel
(B)	Variety
(C)	Type
(D)	Kindred

Q.3	In how many ways can cells in a 3×3 grid be shaded, such that each row and each column have exactly one shaded cell? An example of one valid shading is shown.
(A)	2
(B)	9
(C)	3
(D)	6

Q. 4	There are 4 red, 5 green, and 6 blue balls inside a box. If N number of balls are picked simultaneously, what is the smallest value of N that guarantees there will be at least two balls of the same colour? One cannot see the colour of the balls until they are picked.
(A)	4
(B)	15
(C)	5
(D)	2

Q. 5	Consider a circle with its centre at the origin (O), as shown. Two operations are allowed on the circle. Operation 1: Scale independently along the x and y axes. Operation 2: Rotation in any direction about the origin. Which figure among the options can be achieved through a combination of these two operations on the given circle?
(A)	

Q. 6 - Q. 10 Carry TWO marks Each

Q.6	Elvesland is a country that has peculiar beliefs and practices. They express almost all their emotions by gifting flowers. For instance, if anyone gifts a white flower to someone, then it is always taken to be a declaration of one's love for that person. In a similar manner, the gifting of a yellow flower to someone often means that one is angry with that person. Based only on the information provided above, which one of the following sets of statement(s) can be logically inferred with certainty? (i) In Elvesland, one always declares one's love by gifting a white flower. (ii) In Elvesland, all emotions are declared by gifting flowers. (iii) In Elvesland, sometimes one expresses one's anger by gifting a flower that is not yellow. (iv) In Elvesland, sometimes one expresses one's love by gifting a white flower.
(A)	only (ii)
(B)	(i), (ii) and (iii)
(C)	(i), (iii) and (iv)
(D)	only (iv)

Q.7	Three husband-wife pairs are to be seated at a circular table that has six identical chairs. Seating arrangements are defined only by the relative position of the people. How many seating arrangements are possible such that every husband sits next to his wife?
(A)	16
(B)	4
(C)	120
(D)	720

$\left.\begin{array}{|l|l|}\hline \text { Q. } 8 & \begin{array}{c}\text { Based only on the following passage, which one of the options can be inferred with } \\ \text { certainty? } \\ \text { When the congregation sang together, Apenyo would also join, though her } \\ \text { little screams were not quite audible because of the group singing. But } \\ \text { whenever there was a special number, trouble would begin; Apenyo would } \\ \text { try singing along, much to the embarrassment of her mother. After two or } \\ \text { three such mortifying Sunday evenings, the mother stopped going to church } \\ \text { altogether until Apenyo became older and learnt to behave. } \\ \text { At home too, Apenyo never kept quiet; she hummed or made up silly songs } \\ \text { to sing by herself, which annoyed her mother at times but most often made } \\ \text { her become pensive. She was by now convinced that her daughter had } \\ \text { inherited her love of singing from her father who had died unexpectedly } \\ \text { away from home. }\end{array} \\ \text { [Excerpt from These Hills Called Home by Temsula Ao] }\end{array}\right\}$

Q.9	If x satisfies the equation $4^{8^{x}}=256$, then x is equal to $\ldots \ldots$
(A)	$\frac{1}{2}$
(B)	$\log _{16} 8$
(C)	$\frac{2}{3}$
(D)	$\log _{4} 8$

Q.10	Consider a spherical globe rotating about an axis passing through its poles. There are three points P, Q, and R situated respectively on the equator, the north pole, and midway between the equator and the north pole in the northern hemisphere. Let P, Q, and R move with speeds v_{P}, v_{Q}, and v_{R}, , respectively. Which one of the following options is CORRECT?
(A)	$v_{P}<v_{R}<v_{Q}$
(B)	$v_{P}<v_{Q}<v_{R}$
(C)	$v_{P}>v_{R}>v_{Q}$
(D)	$v_{P}=v_{R} \neq v_{Q}$

Q. 11 - Q. 35 Carry ONE mark Each

Q.11	The fault pattern shown in the figure is a case of
(A)	Normal fault.
(B)	Reverse fault.
(C)	Strike slip fault.
(D)	Oblique slip fault.

Q. 12	The blast pattern of a coal face shown in the figure represents
(A)	burn cut.
(B)	pyramid cut.
(C)	wedge cut.
(D)	drag cut.

Q. 13	A shear stress τ acts tangentially to the upper surface of a block and causes a small deformation Δw as shown. The shear strain is calculated by
(A)	$\frac{\Delta w}{w}$
(B)	$\frac{\Delta w}{h}$
(C)	$\frac{2 \Delta w}{w}$
(D)	$\frac{2 \Delta w}{h}$
Q. 14	Given two vectors $\overrightarrow{\boldsymbol{A}}=3 \hat{\boldsymbol{\imath}}+2 \hat{\boldsymbol{\jmath}}$ and $\overrightarrow{\boldsymbol{B}}=\hat{\boldsymbol{\imath}}+\hat{\boldsymbol{\jmath}}$, the magnitude of projection of $\overrightarrow{\boldsymbol{A}}$ along $\overrightarrow{\boldsymbol{B}}$ is
(A)	$\frac{5}{\sqrt{2}}$
(B)	$\frac{5}{\sqrt{13}}$
(C)	$\frac{5}{\sqrt{26}}$
(D)	5

Q.15	Axial stress versus axial strain curves for two test results of a porous rock from triaxial undrained compression tests are shown in the figure. The pore water pressure for the curve B can be the best explained by
(A)	$U<0$
(B)	$U=0$
(C)	$U>10$
(D)	Civere water pressure, MPa

Q.17	The reaction products of calcium hydroxide with acidic ferruginous mine water are
(A)	$\mathrm{FeO}, \mathrm{Ca}^{+}$and H^{+}
(B)	$\mathrm{FeO}, \mathrm{CaO}$ and $\mathrm{H}_{2} \mathrm{O}$
(C)	$\mathrm{FeH}_{3}, \mathrm{Ca}^{3+}$ and OH^{-}
(D)	$\mathrm{Fe}(\mathrm{OH})_{3}, \mathrm{Ca}^{2+}$ and $\mathrm{H}_{2} \mathrm{O}$
Q.18	An underground coal mine experienced 5 serious injuries, 15 reportable injuries, and 25 minor injuries during 2020. If the average employment in the mine is 1200, then the total injury rate per 1000 persons employed is
(A)	54.0
(B)	20.83
(C)	37.5
(D)	60.0

Q. 19	A linear programming problem is given as: Maximize $Z=4 x_{1}+2 x_{2}$ Subject to: $\begin{aligned} & 2 x_{1}-2 x_{2} \leq 20 \\ & 4 x_{1} \leq 80 \\ & x_{1} \geq 0, x_{2} \geq 0 \end{aligned}$ The problem has
(A)	Unbounded solution.
(B)	Infeasible solution.
(C)	Multiple optimal solutions.
(D)	Unique optimal solution.
Q. 20	A tabular, near-flat (dip $<30^{\circ}$), and less than 2 m thick copper orebody having erratically located grade is to be mined underground. Wall rock and orebody are competent. The most suitable mining method is
(A)	Cut and fill stoping.
(B)	Sub-level stoping.
(C)	Underhand open stoping.
(D)	Breast stoping.

Q. 21	x and y are functions of independent variables r and θ as given below $x=r \cos \theta, y=r \sin \theta$ The Jacobian of x, y is
(A)	$\tan \theta$
(B)	$r^{2} \sin \theta \cos \theta$
(C)	r^{2}
(D)	r
Q. 22	In project scheduling techniques, the CORRECT statement is
(A)	Both CPM and PERT are deterministic.
(B)	Both CPM and PERT are probabilistic.
(C)	CPM is deterministic and PERT is probabilistic.
(D)	CPM is probabilistic and PERT is deterministic.
Q. 23	As per DGMS guidelines, the risk score in Safety Management Plan for a hazard is computed as
(A)	Consequence \times Exposure
(B)	Consequence \times Exposure \times Probability
(C)	Exposure \times Probability
(D)	Consequence \times Probability

Q. 26	The position tracking of a point by GPS is based on the technique of
(A)	Graphical resection.
(B)	Analytical resection.
(C)	Triangulation.
(D)	Trilateration.
Q. 27	Matrix A is negative definite. Which one of the following is NOT the correct statement about the matrix?
(A)	It is symmetric.
(B)	Determinant of A is always less than zero.
(C)	All the eigen values are less than zero.
(D)	Trace of A is always less than zero.
Q. 28	The average ore grade of a copper deposit is 0.9%. The recovery of the metal after processing, smelting and refining is 85%. If the selling price of refined copper is Rs 640/kg, the sale value in Rs. from mining one tonne of ore is \qquad [rounded off to 1 decimal place]
Q. 29	A slope stability radar shows that the position of a point P in a mine dump shifts from $(200,700,-60) \mathrm{m}$ to $(200.05,700.1,-60.75) \mathrm{m}$ over a time Δt. The net displacement in cm of the point P is \qquad [rounded off to 2 decimal places]

Q. 30	A Mohr-Coulomb failure envelop of a sandstone rock is given as $\sigma_{1}=30+3.5 \sigma_{3}$ where σ_{1} and σ_{3}, measured in MPa , are the major and minor principal stresses respectively. The angle of the failure plane with the σ_{3} axis in degree is \qquad . [rounded off to 1 decimal place]
Q. 31	A punch hole of diameter 10 mm is to be made in a 5 mm thick rock plate as shown. If the yield strength of rock plate is 25 MPa , the punch force P required in kN is \qquad [rounded off to 1 decimal place]
Q. 32	'Critical subsidence' has occurred on the surface due to mining of a flat longwall panel at a depth of 200 m . The width of the panel is 150 m . The maximum width of the panel in m that can be mined at a depth of 300 m , to reach critical subsidence is —. \qquad [rounded off to 1 decimal place]
Q. 33	To increase the resistance of a mine roadway by $1.5 \mathrm{Ns}^{2} \mathrm{~m}^{-8}$, the size in m^{2} of the regulator to be installed is \qquad [rounded off to 2 decimal places]

Q. 34	A coal seam of 3.0 m height is mined with a double-ended ranging drum shearer (DERDS) for a web depth of 0.5 m . The coal density is 1.4 tonne $/ \mathrm{m}^{3}$. If the panel width is 150 m , the production per cycle in tonne is \qquad [rounded off to 1 decimal place]
Q. 35	In a panel with 50 workers, a miner typically consumes $2.5 \times 10^{-3} \mathrm{~m}^{3} / \mathrm{min}$ of oxygen. The percentage of oxygen in the intake air is 20.95%. To ensure minimum permissible oxygen in the return air as per CMR 2017 the quantity of ventilating air in $\mathrm{m}^{3} / \mathrm{min}$ to be supplied to the panel is \qquad [rounded off to 2 decimal places]

Q. 36 - Q. 65 Carry TWO marks Each

Q.36	In a quality control process of coal supplied to a thermal plant, the 3-sigma control limits for fixed carbon (FC) are defined by $40 \% \pm 15 \%$. The process is termed "out of control" if: Rule 1: 4 out of 5 successive values of FC are situated at the same side of the mean and at a distance more than 1 standard deviation. Rule 2: Any one value crosses any of the 3-sigma control limits. For the following continuous data of FC (\%) : 49, 51, 56, 20, 46, 48, 47, 49, 45, $41,42,40$, the process is		
(A)	out of control because of both rules $1 \& 2$.		
(B)	out of control because of rule 1 only.		
(C)	out of control because of rule 2 only.		(D)
:---			
not out of control.			

Q. 47	A circular tunnel is developed in a biaxial in situ stress field as shown in the figure. If the ratio between tangential stress at the boundary point A and that at the boundary point B is 2.0, the value of k is [rounded off to 2 decimal places]

Q.48	Strength of a rectangular coal pillar in MPa is given by where $w, l(\geq w)$ and h are width, length and height of the pillar, respectively. The parameter S_{1} is constant. A 30 m square pillar is split into two halves as shown in the figure. The height of the pillar is 3 m . The ratio of safety factors between one half-pillar and the original square pillar is [rounded off to 2 decimal places $]$
Q.49 9	

Q. 50	Stress waves are sent from the transmitter A to the receiver B through an isotropic and elastic cylindrical rock specimen as shown in the figure. The length of the specimen is 100 mm . The travel time of longitudinal and shear waves are 0.025 ms and 0.04 ms , respectively. The Poisson's ratio of the rock specimen is__. [rounded off to 2 decimal places $]$
Transmitter A	

Q. 51	A jointed rock sample is subjected to 20 MPa vertical stress as shown in the figure. The modulus of elasticity of the rock is 10 GPa and the normal stiffness of the joint surface is $5 \mathrm{GPa} / \mathrm{m}$. Assuming one-dimensional elastic behaviour of rock and joint, the displacement in mm of the loading surface $A B$ is \qquad [rounded off to 1 decimal place]
Q. 52	An unmanned aerial vehicle (UAV) with payload of 2 kg reaches vertically 100 m in 10 s at uniform velocity. The self-weight of the UAV is 1.2 kg . The power required in lifting in kW is \qquad [rounded off to 2 decimal places]
Q. 53	An irregular shaped rock sample of mass 60 g displaces 27 g of brine when submerged in a filled jar. The specific gravity of brine is 1.05 . The unit weight of the rock sample in $\mathrm{kN} / \mathrm{m}^{3}$ is \qquad [rounded off to 2 decimal places]
Q. 54	The reliability function of a pump is given as $R(t)=\exp \left[-\left(\frac{t}{1000}\right)^{0.5}\right]$, where t stands for time in years. If the pump comes with a six-month warranty, the number of years for the pump to attain a reliability of 0.9 is \qquad [rounded off to 2 decimal places]

Q. 63	A mine void of width 20 m , length 50 m and height 30 m is to be filled with mill tailings based cemented paste backfill (CPB). The CPB contains tailings:cement:water as 1.0:0.1:0.2 by weight. The specific gravity of tailings and cement are 2.8 and 2.4 respectively. Assuming 20% of the original volume of water is retained in the final backfill, the amount of cement in tonne required so as to fill the void completely is \qquad [rounded off to nearest integer]
Q. 64	A fan installed in a mine ventilation system circulates $30 \mathrm{~m}^{3} / \mathrm{s}$ of air to two districts A and B as shown in Figure below. It is desired to increase the quantity of air by 20% in the district B using a booster fan in it. Assuming that the main fan pressure is unchanged, the pressure of the booster fan, in Pa , is \qquad [rounded off to 2 decimal places]

Q. 65	Data related to a water turbine pump with backward bladed impellers are given below: Impeller diameter RPM	$: 35 \mathrm{~cm}$
Angle of curvature of blade	$: 1200$	
Radial velocity of discharge	$: 30^{\circ}$	
Manometric efficiency	$: 2 \mathrm{~m} / \mathrm{s}$	
	The number of impellers required in the pump to lift water by a height 300 m is [rounded off to higher integer $]$	

