GATE 2022 Mathematics (MA)

Useful data

$A \backslash B$	$\{a \in A: a \notin B\}$
\mathbb{C}	Set of all complex numbers
$\mathbb{C}^{m \times n}$	Set of all matrices of order $m \times n$ with complex entries
$\mathbb{C}^{\infty}(\Omega)$	Collection of all infinitely differentiable functions on the open domain Ω
i	$\sqrt{-1}$
I	Identity matrix of appropriate order
$L^{2}(\mathbb{R})$	$:=L^{2}(\mathbb{R}, d x)$
$L^{2}[a, b]$	$:=L^{2}([a, b], d x)$
\mathbb{N}	Set of all positive integers
\mathbb{Q}	Set of all rational numbers
\mathbb{R}	Set of all real numbers
$\mathbb{R}^{m \times n}$	Set of all matrices of order $m \times n$ with real entries
\mathbb{S}^{1}	$\left\{\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}: x_{1}^{2}+x_{2}^{2}=1\right\}$
\mathbb{S}^{2}	$\left\{\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}^{3}: x_{1}^{2}+x_{2}^{2}+x_{3}^{2}=1\right\}$
\mathbb{Z}	Set of all integers

GATE 2022 General Aptitude (GA)

Q. 1 - Q. 5 Carry ONE mark each.

Q. 1	As you grow older, an injury to your___ may take longer to $\quad _$
(A)	heel / heel
(B)	heal / heel
(C)	heal / heal
(D)	heel / heal

Q.2	In a 500 m race, P and Q have speeds in the ratio of $3: 4 . \mathrm{Q}$ starts the race when P has already covered 140 m. What is the distance between P and Q (in m) when P wins the race?
(A)	20
(B)	40
(C)	60
(D)	140

Q.3	Three bells P, Q, and R are rung periodically in a school. P is rung every 20 minutes; Q is rung every 30 minutes and R is rung every 50 minutes. If all the three bells are rung at 12:00 PM, when will the three bells ring together again the next time?
(A)	$5: 00 \mathrm{PM}$
(B)	$5: 30 \mathrm{PM}$
(C)	$6: 00 \mathrm{PM}$
(D)	$6: 30 \mathrm{PM}$

Q.4	Given below are two statements and four conclusions drawn based on the statements. Statement 1: Some bottles are cups. Statement 2: All cups are knives.
Conclusion I: Some bottles are knives.	
Conclusion II: Some knives are cups.	
Conclusion III: All cups are bottles.	
(A)	Only conclusion I and conclusion II are correct
(B)	Only conclusion II and conclusion III are correct knives are cups.
(C)	Only conclusion II and conclusion IV are correct following options can be logically inferred?
(D)	Only conclusion III and conclusion IV are correct

Organised by
Inglanised institute of Technology Kharagpur
In

Q. 5	The figure below shows the front and rear view of a disc, which is shaded with identical patterns. The disc is flipped once with respect to any one of the fixed axes 1-1, 2-2 or 3-3 chosen uniformly at random. What is the probability that the disc DOES NOT retain the same front and rear views after the flipping operation?
(A)	0
(B)	1

Q. 6 - Q. 10 Carry TWO marks each.

Q.6	Altruism is the human concern for the wellbeing of others. Altruism has been shown to be motivated more by social bonding, familiarity and identification of belongingness to a group. The notion that altruism may be attributed to empathy or guilt has now been rejected. Which one of the following is the CORRECT logical inference based on the information in the above passage?
(A)	Humans engage in altruism due to guilt but not empathy
(B)	Humans engage in altruism due to empathy but not guilt
(C)	Humans engage in altruism due to group identification but not empathy
(D)	Humans engage in altruism due to empathy but not familiarity

Indian Institute of Technology Kharagpur

Q.7	There are two identical dice with a single letter on each of the faces. The following six letters: Q, R, S, T, U, and V, one on each of the faces. Any of the six outcomes are equally likely. The two dice are thrown once independently at random. What is the probability that the outcomes on the dice were composed only of any combination of the following possible outcomes: Q, U and V?
(A)	$\frac{1}{4}$
(B)	$\frac{3}{4}$
(C)	$\frac{1}{6}$
(D)	$\frac{5}{36}$

Q. 8	The price of an item is 10% cheaper in an online store S compared to the price at another online store M. Store S charges ₹ 150 for delivery. There are no delivery charges for orders from the store M. A person bought the item from the store S and saved ₹ 100. What is the price of the item at the online store S (in ₹) if there are no other charges than what is described above?
(A)	2500
(B)	2250
(C)	1750
(D)	1500

Q. 9	The letters P, Q, R, S, T and U are to be placed one per vertex on a regular convex hexagon, but not necessarily in the same order. Consider the following statements: - The line segment joining R and S is longer than the line segment joining P and Q . - The line segment joining R and S is perpendicular to the line segment joining P and Q . - The line segment joining R and U is parallel to the line segment joining T and Q . Based on the above statements, which one of the following options is CORRECT?
(A)	The line segment joining R and T is parallel to the line segment joining Q and S
(B)	The line segment joining T and Q is parallel to the line joining P and U
(C)	The line segment joining R and P is perpendicular to the line segment joining U and Q
(D)	The line segment joining Q and S is perpendicular to the line segment joining R and P

Q. 10	An ant is at the bottom-left corner of a grid (point P) as shown above. It aims to move to the top-right corner of the grid. The ant moves only along the lines marked in the grid such that the current distance to the top-right corner strictly decreases. Which one of the following is a part of a possible trajectory of the ant during the movement?
(A)	
(B)	
(C)	
(D)	

GATE 2022 Mathematics (MA)

Q. 11 - Q. 35 Carry ONE mark each.

Q.11	Suppose that the characteristic equation of $M \in \mathbb{C}^{3 \times 3}$ is $\lambda^{3}+\alpha \lambda^{2}+\beta \lambda-1=0$, where $\alpha, \beta \in \mathbb{C}$ with $\alpha+\beta \neq 0$. Which of the following statements is TRUE?
(A)	$M(I-\beta M)=M^{-1}(M+\alpha I)$
(B)	$M(I+\beta M)=M^{-1}(M-\alpha I)$
(C)	$M^{-1}\left(M^{-1}+\beta I\right)=M-\alpha I$
(D)	$M^{-1}\left(M^{-1}-\beta I\right)=M+\alpha I$

GATE 2022 Mathematics (MA)

Q.12	Consider $\mathbf{P}:$ Let $M \in \mathbb{R}^{m \times n}$ with $m>n \geq 2$. If $\operatorname{rank}(M)=n$, then the system of linear equations $M x=0$ has $x=0$ as the only solution. $\mathbf{Q :}$ Let $E \in \mathbb{R}^{n \times n}, n \geq 2$ be a non-zero matrix such that $E^{3}=0$. Then $I+E^{2}$ is a singular matrix. Which of the following statements is TRUE?
(A)	Both \mathbf{P} and \mathbf{Q} are TRUE
(B)	Both \mathbf{P} and \mathbf{Q} are FALSE
(C)	\mathbf{P} is TRUE and \mathbf{Q} is FALSE
(D)	\mathbf{P} is FALSE and \mathbf{Q} is TRUE

GATE 2022 Mathematics (MA)

Q.13	Consider the real function of two real variables given by $u(x, y)=e^{2 x}[\sin 3 x \cos 2 y \cosh 3 y-\cos 3 x \sin 2 y \sinh 3 y]$. Let $v(x, y)$ be the harmonic conjugate of $u(x, y)$ such that $v(0,0)=2$. Let $z=x+i y$ and $f(z)=u(x, y)+i v(x, y)$, then the value of $4+2 i f(i \pi)$ is
(A)	$e^{3 \pi}+e^{-3 \pi}$
(B)	$e^{3 \pi}-e^{-3 \pi}$
(C)	$-e^{3 \pi}+e^{-3 \pi}$
(D)	$-e^{3 \pi}-e^{-3 \pi}$

GATE 2022 Mathematics (MA)

Q.14	The value of the integral where C is the circle of radius 2 direction is
(A)	$-2 \pi i$
(B)	2π
(C)	0
(D)	$2 \pi i$

GATE 2022 Mathematics (MA)

| Q.15 | Let X be a real normed linear space. Let $X_{0}=\{x \in X:\\|x\\|=1\}$. If X_{0} contains
 two distinct points x and y and the line segment joining them, then, which of the
 following statements is TRUE? | | | | |
|---|---|---|---|---|---|---|---|
| (A) | $\\|x+y\\|=\\|x\\|+\\|y\\|$ and x, y are linearly independent |
| (B) | $\\|x+y\\|=\\|x\\|+\\|y\\|$ and x, y are linearly dependent |
| (C) | $\\|x+y\\|^{2}=\\|x\\|^{2}+\\|y\\|^{2}$ and x, y are linearly independent |
| (D) | $\\|x+y\\|=2\\|x\\|\\|y\\|$ and x, y are linearly dependent |
| | |
| | |

GATE 2022 Mathematics (MA)

Q.16	Let $\left\{e_{k}: k \in \mathbb{N}\right\}$ be an orthonormal basis for a Hilbert space H. Define $f_{k}=e_{k}+e_{k+1}, k \in \mathbb{N}$ and $g_{j}=\sum_{n=1}^{j}(-1)^{n+1} e_{n}, j \in \mathbb{N}$. Then $\sum_{k=1}^{\infty}\left\|\left\langle g_{j}, f_{k}\right\rangle\right\|^{2}=$
(A)	0
(B)	j^{2}
(C)	$4 j^{2}$
(D)	1

GATE 2022 Mathematics (MA)

Q.17	Consider \mathbb{R}^{2} with the usual metric. Let $A=\left\{(x, y) \in \mathbb{R}^{2}: x^{2}+y^{2} \leq 1\right\}$ and $B=$ $\left\{(x, y) \in \mathbb{R}^{2}:(x-2)^{2}+y^{2} \leq 1\right\}$. Let $M=A \cup B$ and $N=$ interior $(A) \cup$ interior (B). Then, which of the following statements is TRUE?
(A)	M and N are connected
(B)	Neither M nor N is connected
(C)	M is connected and N is not connected
(D)	M is not connected and N is connected

GATE 2022 Mathematics (MA)

Q.18	The real sequence generated by the iterative scheme
$x_{n}=\frac{x_{n-1}}{2}+\frac{1}{x_{n-1}}, n \geq 1$	
(A)	converges to $\sqrt{2}$, for all $x_{0} \in \mathbb{R} \backslash\{0\}$
(B)	converges to $\sqrt{2}$, whenever $x_{0}>\sqrt{\frac{2}{3}}$
(C)	converges to $\sqrt{2}$, whenever $x_{0} \in(-1,1) \backslash\{0\}$
(D)	diverges for any $x_{0} \neq 0$

GATE 2022 Mathematics (MA)

Q.19	The initial value problem where y_{0} is a real constant, has $d x$ (A)
a unique solution	
(B)	exactly two solutions
(C)	infinitely many solutions
(D)	no solution

GATE 2022 Mathematics (MA)

Q. 20	If eigenfunctions corresponding to distinct eigenvalues λ of the Sturm-Liouville problem
$\qquad$$\frac{d^{2} y}{d x^{2}}-3 \frac{d y}{d x}=\lambda y, 0<x<\pi$, $y(0)=y(\pi)=0$	
(A)	$e^{-3 x}$
(B)	$e^{-2 x}$
(C)	$e^{2 x}$
(D)	$e^{3 x}$

GATE 2022 Mathematics (MA)

Q.21	The steady state solution for the heat equation $\qquad$$\frac{\partial u}{\partial t}-\frac{\partial^{2} u}{\partial x^{2}}=0,0<x<2, t>0$, (Aith the initial condition $u(x, 0)=0,0<x<2$ and the boundary conditions $u(0, t)=1$ and $u(2, t)=3, t>0$, at $x=1$ is
(B)	2
(C)	3
(D)	4

GATE 2022 Mathematics (MA)

Q.22	Consider $\left([0,1], T_{1}\right)$, where T_{1} is the subspace topology induced by the Euclidean topology on \mathbb{R}, and let T_{2} be any topology on $[0,1]$. Consider the following state- ments: $\mathbf{P}:$ If T_{1} is a proper subset of T_{2}, then $\left([0,1], T_{2}\right)$ is not compact. $\mathbf{Q}:$ If T_{2} is a proper subset of T_{1}, then $\left([0,1], T_{2}\right)$ is not Hausdorff. Then				
(A)	\mathbf{P} is TRUE and \mathbf{Q} is FALSE	$	$	(B)	Both \mathbf{P} and \mathbf{Q} are TRUE
:---	:---				
(C)	Both \mathbf{P} and \mathbf{Q} are FALSE				
(D)	\mathbf{P} is FALSE and \mathbf{Q} is TRUE				

GATE 2022 Mathematics (MA)

Q.23	Let $p:\left([0,1], T_{1}\right) \rightarrow\left(\{0,1\}, T_{2}\right)$ be the quotient map, arising from the characteristic function on $\left[\frac{1}{2}, 1\right]$, where T_{1} is the subspace topology induced by the Euclidean topology on \mathbb{R}. Which of the following statements is TRUE?
(A)	p is an open map but not a closed map
(B)	p is a closed map but not an open map
(C)	p is a closed map as well as an open map
(D)	p is neither an open map nor a closed map

GATE 2022 Mathematics (MA)

Q.24	Set $X_{n}:=\mathbb{R}$ for each $n \in \mathbb{N}$. Define $Y:=\prod_{n \in \mathbb{N}} X_{n}$. Endow Y with the product topology, where the topology on each X_{n} is the Euclidean topology. Consider the set with the subspace topology induced from Y. Which of the following statements is TRUE?
$\qquad$$\Delta=\{(x, x, x, \cdots) \mid x \in \mathbb{R}\}$	
(A)	Δ is open in Y
(C)	Δ is locally compact
(D)	Δ is disconnected Y

GATE 2022 Mathematics (MA)

Q. 25	Consider the linear sytem of equations $A x=b$ with $A=\left(\begin{array}{lll} 3 & 1 & 1 \\ 1 & 4 & 1 \\ 2 & 0 & 3 \end{array}\right) \quad \text { and } \quad b=\left(\begin{array}{l} 2 \\ 3 \\ 4 \end{array}\right)$ Which of the following statements are TRUE?
(A)	The Jacobi iterative matrix is $\left(\begin{array}{ccc}0 & 1 / 4 & 1 / 3 \\ 1 / 3 & 0 & 1 / 3 \\ 2 / 3 & 0 & 0\end{array}\right)$
(B)	The Jacobi iterative method converges for any initial vector
(C)	The Gauss-Seidel iterative method converges for any initial vector
(D)	The spectral radius of the Jacobi iterative matrix is less than 1

GATE 2022 Mathematics (MA)

Q.26	The number of non-isomorphic abelian groups of order $2^{2} .3^{3} .5^{4}$ is

GATE 2022 Mathematics (MA)

Q.27	The number of subgroups of a cyclic group of order 12 is

GATE 2022 Mathematics (MA)

Q. 28	The radius of convergence of the series
	$\sum_{n \geq 0} 3^{n+1} z^{2 n}, z \in \mathbb{C}$
is (round off to TWO decimal places).	

GATE 2022 Mathematics (MA)

Q.29	The number of zeros of the polynomial in the unit disc $\{z \in \mathbb{C}:\|z\|<1\}$ is

GATE 2022 Mathematics (MA)

Q. 30	If $P(x)$ is a polynomial of degree 5 and where $x_{0}, x_{1}, \cdots, x_{6}$ are distinct points in the interval $[2,3]$, then the value of $\alpha^{2}-\alpha+1$ is

GATE 2022 Mathematics (MA)

Q.31	The maximum value of $f(x, y)=49-x^{2}-y^{2}$ on the line $x+3 y=10$ is

GATE 2022 Mathematics (MA)

Q.32	If the function $f(x, y)=x^{2}+x y+y^{2}+\frac{1}{x}+\frac{1}{y}, x \neq 0, y \neq 0$ attains its local minimum value at the point (a, b), then the value of $a^{3}+b^{3}$ is TWO decimal places).

GATE 2022 Mathematics (MA)

Q.33	If the ordinary differential equation $\qquad$$x^{2} \frac{d^{2} \phi}{d x^{2}}+x \frac{d \phi}{d x}+x^{2} \phi=0, x>0$ has a solution of the form $\phi(x)=x^{r} \sum_{n=0}^{\infty} a_{n} x^{n}$, where a_{n} 's are constants and $a_{0} \neq 0$, then the value of $r^{2}+1$ is

GATE 2022 Mathematics (MA)

Q.34	The Bessel functions $J_{\alpha}(x), x>0, \alpha \in \mathbb{R}$ satisfy $J_{\alpha-1}(x)+J_{\alpha+1}(x)=\frac{2 \alpha}{x} J_{\alpha}(x)$. Then, the value of $\left(\pi J_{\frac{3}{2}}(\pi)\right)^{2}$ is

GATE 2022 Mathematics (MA)

Q. 35	The partial differential equation $7 \frac{\partial^{2} u}{\partial x^{2}}+16 \frac{\partial^{2} u}{\partial x \partial y}+4 \frac{\partial^{2} u}{\partial y^{2}}=0$ is transformed to $A \frac{\partial^{2} u}{\partial \xi^{2}}+B \frac{\partial^{2} u}{\partial \xi \partial \eta}+C \frac{\partial^{2} u}{\partial \eta^{2}}=0$ using $\xi=y-2 x$ and $\eta=7 y-2 x$. Then, the value of $\frac{1}{12^{3}}\left(B^{2}-4 A C\right)$ is

GATE 2022 Mathematics (MA)
Q. 36 - Q. 65 Carry TWO marks each.

Q.36	Let $\mathbb{R}[X]$ denote the ring of polynomials in X with real coefficients. Then, the quotient ring $\mathbb{R}[X] /\left(X^{4}+4\right)$ is
(A)	a field
(B)	an integral domain, but not a field
(C)	not an integral domain, but has 0 as the only nilpotent element
(D)	a ring which contains non-zero nilpotent elements

GATE 2022 Mathematics (MA)

Q.37	Consider the following conditions on two proper non-zero ideals J_{1} and J_{2} of a non-zero commutative ring R. $\mathbf{P :}$ For any $r_{1}, r_{2} \in R$, there exists a unique $r \in R$ such that $r-r_{1} \in J_{1}$ and $r-r_{2} \in J_{2}$. $\mathbf{Q :} J_{1}+J_{2}=R$ Then, which of the following statements is TRUE?
(A)	\mathbf{P} implies \mathbf{Q} but \mathbf{Q} does not imply \mathbf{P}
(B)	\mathbf{Q} implies \mathbf{P} but \mathbf{P} does not imply \mathbf{Q}
(C)	\mathbf{P} implies \mathbf{Q} and \mathbf{Q} implies \mathbf{P}
(D)	\mathbf{P} does not imply \mathbf{Q} and \mathbf{Q} does not imply \mathbf{P}

GATE 2022 Mathematics (MA)

Q. 38	Let $f:[-\pi, \pi] \rightarrow \mathbb{R}$ be a continuous function such that $f(x)>\frac{f(0)}{2},\|x\|<\delta$ for some δ satisfying $0<\delta<\pi$. Define $P_{n, \delta}(x)=(1+\cos x-\cos \delta)^{n}$, for $n=1,2,3, \cdots$ Then, which of the following statements is TRUE?
(A)	$\lim _{n \rightarrow \infty} \int_{0}^{2 \delta} f(x) P_{n, \delta}(x) d x=0$
(B)	$\lim _{n \rightarrow \infty} \int_{-2 \delta}^{0} f(x) P_{n, \delta}(x) d x=0$
(C)	$\lim _{n \rightarrow \infty} \int_{-\delta}^{\delta} f(x) P_{n, \delta}(x) d x=0$
(D)	$\lim _{n \rightarrow \infty} \int_{[-\pi, \pi \backslash \backslash[-\delta, \delta]} f(x) P_{n, \delta}(x) d x=0$

GATE 2022 Mathematics (MA)

Q. 39	\mathbf{P} : Suppose that $\sum_{n=0}^{\infty} a_{n} x^{n}$ converges at $x=-3$ and diverges at $x=6$. Then $\sum_{n=0}^{\infty}(-1)^{n} a_{n}$ converges. Q: The interval of convergence of the series $\sum_{n=2}^{\infty} \frac{(-1)^{n} x^{n}}{4^{n} \log _{e} n}$ is $[-4,4]$. Which of the following statements is TRUE?
(A)	\mathbf{P} is true and \mathbf{Q} is true
(B)	\mathbf{P} is false and \mathbf{Q} is false
(C)	\mathbf{P} is true and \mathbf{Q} is false
(D)	\mathbf{P} is false and \mathbf{Q} is true

GATE 2022 Mathematics (MA)

Q. 40	Let $f_{n}(x)=\frac{x^{2}}{x^{2}+(1-n x)^{2}}, x \in[0,1], n=1,2,3, \cdots$ Then, which of the following statements is TRUE?
(A)	$\left\{f_{n}\right\}$ is not equicontinuous on $[0,1]$
(B)	$\left\{f_{n}\right\}$ is uniformly convergent on $[0,1]$
(C)	$\left\{f_{n}\right\}$ is equicontinuous on $[0,1]$
(D)	$\left\{f_{n}\right\}$ is uniformly bounded and has a subsequence converging uniformly on [0, 1]

GATE 2022 Mathematics (MA)

Q.41	Let (\mathbb{Q}, d) be the metric space with $d(x, y)=\|x-y\|$. Let $E=\left\{p \in \mathbb{Q}: 2<p^{2}<3\right\}$. Then, the set E is
(A)	closed but not compact
(B)	not closed but compact
(C)	compact
(D)	neither closed nor compact

GATE 2022 Mathematics (MA)

Q.42	Let $T: L^{2}[-1,1] \rightarrow L^{2}[-1,1]$ be defined by $T f=\tilde{f}$, where $\tilde{f}(x)=f(-x)$ almost everywhere. If M is the kernel of $I-T$, then the distance between the function $\phi(t)=e^{t}$ and M is
(A)	$\frac{1}{2} \sqrt{\left(e^{2}-e^{-2}+4\right)}$
(B)	$\frac{1}{2} \sqrt{\left(e^{2}-e^{-2}-2\right)}$
(C)	$\frac{1}{2} \sqrt{\left(e^{2}-4\right)}$
(D)	$\frac{1}{2} \sqrt{\left(e^{2}-e^{-2}-4\right)}$

GATE 2022 Mathematics (MA)

Q.43	Let X, Y and Z be Banach spaces. Suppose that $T: X \rightarrow Y$ is linear and $S: Y \rightarrow Z$ is linear, bounded and injective. In addition, if $S \circ T: X \rightarrow Z$ is bounded, then, which of the following statements is TRUE?
(A)	T is surjective
(B)	T is bounded but not continuous
(C)	T is bounded
(D)	T is not bounded

GATE 2022 Mathematics (MA)

Q. 44	The first derivative of a function $f \in C^{\infty}(-3,3)$ is approximated by an interpolating polynomial of degree 2, using the data $(-1, f(-1)),(0, f(0))$ and $(2, f(2))$. It is found that Then, the value of $\frac{1}{\alpha \beta}$ is $f^{\prime}(0) \approx-\frac{2}{3} f(-1)+\alpha f(0)+\beta f(2)$.
(A)	3
(B)	6
(D)	9
	12

GATE 2022 Mathematics (MA)

Q.45	The work done by the force $F=(x+y) \hat{i}-\left(x^{2}+y^{2}\right) \hat{j}$, where \hat{i} and \hat{j} are unit vectors in $\overrightarrow{O X}$ and $\overrightarrow{O Y}$ directions, respectively, along the upper half of the circle $x^{2}+y^{2}=1$ from $(1,0)$ to $(-1,0)$ in the $x y$-plane is		
(A)	$-\pi$	(B) $-\frac{\pi}{2} \quad$	(C)
---:			
$\frac{\pi}{2}$			
(D)			

GATE 2022 Mathematics (MA)

Q. 46	Let $u(x, t)$ be the solution of the wave equation $\frac{\partial^{2} u}{\partial t^{2}}-\frac{\partial^{2} u}{\partial x^{2}}=0,0<x<\pi, t>0$ with the initial conditions $u(x, 0)=\sin x+\sin 2 x+\sin 3 x, \frac{\partial u}{\partial t}(x, 0)=0,0<x<\pi$ and the boundary conditions $u(0, t)=u(\pi, t)=0, t \geq 0$. Then, the value of $u\left(\frac{\pi}{2}, \pi\right)$ is
(A)	$-1 / 2$
(B)	0
(C)	$1 / 2$
(D)	1

GATE 2022 Mathematics (MA)

Q.47	Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be a linear transformation defined by For $p, q \in \mathbb{R}$, let $T^{-1}((p, q))=(x, y)$. Which of the following statements is TRUE?
(A)	$x=p-q ; y=2 p-q$
(B)	$x=p+q ; y=2 p-q$
(C)	$x=p+q ; y=2 p+q$
(D)	$x=p-q ; y=2 p+q$

GATE 2022 Mathematics (MA)

Q. 48	Let $y=(\alpha,-1)^{T}, \alpha \in \mathbb{R}$ be a feasible solution for the dual problem of the linear programming problem $\begin{array}{rr} \text { Maximize: } \quad 5 x_{1}+12 x_{2} \\ \text { subject to: } & x_{1}+2 x_{2}+x_{3} \leq 10 \\ & 2 x_{1}-x_{2}+3 x_{3}=8 \\ & x_{1}, x_{2}, x_{3} \geq 0 \end{array}$ Which of the following statements is TRUE?
(A)	$\alpha<3$
(B)	$3 \leq \alpha<5.5$
(C)	$5.5 \leq \alpha<7$
(D)	$\alpha \geq 7$

GATE 2022 Mathematics (MA)

Q.49	Let K denote the subset of \mathbb{C} consisting of elements algebraic over \mathbb{Q}. Then, which of the following statements are TRUE?				
(A)	No element of $\mathbb{C} \backslash K$ is algebraic over \mathbb{Q}	$	$	(B)	K is an algebraically closed field
---:	:---				
(C)	For any bijective ring homomorphism $f: \mathbb{C} \longrightarrow \mathbb{C}$, we have $f(K)=K$				
(D)	There is no bijection between K and \mathbb{Q}				

GATE 2022 Mathematics (MA)

Q.50	Let T be a Möbius transformation such that $T(0)=\alpha, T(\alpha)=0$ and $T(\infty)=-\alpha$, where $\alpha=(-1+i) / \sqrt{2}$. Let L denote the straight line passing through the origin with slope -1, and let C denote the circle of unit radius centred at the origin. Then, which of the following statements are TRUE?
(A)	T maps L to a straight line
(B)	T maps L to a circle
(C)	T^{-1} maps C to a straight line
(D)	T^{-1} maps C to a circle

GATE 2022 Mathematics (MA)

Q.51	Let $a>0$. Define $D_{a}: L^{2}(\mathbb{R}) \rightarrow L^{2}(\mathbb{R})$ by $\left(D_{a} f\right)(x)=\frac{1}{\sqrt{a}} f\left(\frac{x}{a}\right)$, almost every- where, for $f \in L^{2}(\mathbb{R})$. Then, which of the following statements are TRUE?
(A)	D_{a} is a linear isometry
(B)	D_{a} is a bijection
(C)	$D_{a} \circ D_{b}=D_{a+b}, b>0$
(D)	D_{a} is bounded from below

GATE 2022 Mathematics (MA)

Q. 52	Let $\left\{\phi_{0}, \phi_{1}, \phi_{2}, \cdots\right\}$ be an orthonormal set in $L^{2}[-1,1]$ such that $\phi_{n}=C_{n} P_{n}$, where C_{n} is a constant and P_{n} is the Legendre polynomial of degree n, for each $n \in \mathbb{N} \cup\{0\}$. Then, which of the following statements are TRUE?
(A)	$\phi_{6}(1)=1$
(B)	$\phi_{7}(-1)=1$
(C)	$\phi_{7}(1)=\sqrt{\frac{15}{2}}$
(D)	$\phi_{6}(-1)=\sqrt{\frac{13}{2}}$

GATE 2022 Mathematics (MA)

Q.53	Let $X=(\mathbb{R}, T)$, where T is the smallest topology on \mathbb{R} in which all the singleton sets are closed. Then, which of the following statements are TRUE?
(A)	$[0,1)$ is compact in X
(B)	X is not first countable
(C)	X is second countable
(D)	X is first countable

GATE 2022 Mathematics (MA)

Q.54	Consider (\mathbb{Z}, T), where T is the topology generated by sets of the form for $m, n \in \mathbb{Z}$ and $n \neq 0$. Then, which of the following statements are TRUE?
(A)	(\mathbb{Z}, T) is connected
(B)	Each $A_{m, n}$ is a closed subset of (\mathbb{Z}, T)
(C)	(\mathbb{Z}, T) is Hausdorff
(\mathbb{D})	(\mathbb{Z}, T) is metrizable

GATE 2022 Mathematics (MA)

Q. 55	Let $A \in \mathbb{R}^{m \times n}, c \in \mathbb{R}^{n}$ and $b \in \mathbb{R}^{m}$. Consider the linear programming primal problem $\begin{array}{rr} \text { Minimize: } & c^{T} x \\ \text { subject to: } & A x=b \\ & x \geq 0 \end{array}$ Let x^{0} and y^{0} be feasible solutions of the primal and its dual, respectively. Which of the following statements are TRUE?
(A)	$c^{T} x^{0} \geq b^{T} y^{0}$
(B)	$c^{T} x^{0}=b^{T} y^{0}$
(C)	If $c^{T} x^{0}=b^{T} y^{0}$, then x^{0} is optimal for the primal
(D)	If $c^{T} x^{0}=b^{T} y^{0}$, then y^{0} is optimal for the dual

GATE 2022 Mathematics (MA)

Q. 56	Consider \mathbb{R}^{3} as a vector space with the usual operations of vector addition and scalar multiplication. Let $x \in \mathbb{R}^{3}$ be denoted by $x=\left(x_{1}, x_{2}, x_{3}\right)$. Define subspaces W_{1} and W_{2} by $W_{1}:=\left\{x \in \mathbb{R}^{3}: x_{1}+2 x_{2}-x_{3}=0\right\}$ and $W_{2}:=\left\{x \in \mathbb{R}^{3}: 2 x_{1}+3 x_{3}=0\right\}$ Let $\operatorname{dim}(\mathrm{U})$ denote the dimension of the subspace U. Which of the following statements are TRUE?
(A)	$\operatorname{dim}\left(\mathrm{W}_{1}\right)=\operatorname{dim}\left(\mathrm{W}_{2}\right)$
(B)	$\operatorname{dim}\left(W_{1}\right)+\operatorname{dim}\left(W_{2}\right)-\operatorname{dim}\left(\mathbb{R}^{3}\right)=1$
(C)	$\operatorname{dim}\left(\mathrm{W}_{1}+\mathrm{W}_{2}\right)=2$
(D)	$\operatorname{dim}\left(\mathrm{W}_{1} \cap \mathrm{~W}_{2}\right)=1$

GATE 2022 Mathematics (MA)

Q. 57	Three companies C_{1}, C_{2} and C_{3} submit bids for three jobs J_{1}, J_{2} and J_{3}. The costs involved per unit are given in the table below: Then, the cost of the optimal assignment is \qquad

GATE 2022 Mathematics (MA)
$\left.\begin{array}{|l|l|}\hline \text { Q. } 58 & \begin{array}{l}\text { The initial value problem } \frac{d y}{d x}=f(x, y), y\left(x_{0}\right)=y_{0} \text { is solved by using the following } \\ \text { second order Runge-Kutta method: }\end{array} \\ \qquad \begin{array}{r}K_{1}=h f\left(x_{i}, y_{i}\right) \\ K_{2}=h f\left(x_{i}+\alpha h, y_{i}+\beta K_{1}\right) \\ y_{i+1}=y_{i}+\frac{1}{4}\left(K_{1}+3 K_{2}\right), i \geq 0,\end{array} \\ \begin{array}{l}\text { where } h \text { is the uniform step length between the points } x_{0}, x_{1}, \cdots, x_{n} \text { and } y_{i}= \\ y\left(x_{i}\right) . \text { The value of the product } \alpha \beta \text { is } \\ \text { places). }\end{array} \\ \hline \text { (round off to TWO decimal }\end{array}\right\}$

GATE 2022 Mathematics (MA)

Q.59	The surface area of the paraboloid $z=x^{2}+y^{2}$ between the planes $z=0$ and $z=1$ is (round off to ONE decimal place).

GATE 2022 Mathematics (MA)

Q.60	The rate of change of $f(x, y, z)=x+x \cos z-y \sin z+y$ at P_{0} in the direction from $P_{0}(2,-1,0)$ to $P_{1}(0,1,2)$ is

GATE 2022 Mathematics (MA)

Q. 61	If the Laplace equation $\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0,1<x<2,1<y<2$ with the boundary conditions $\frac{\partial u}{\partial x}(1, y)=y, \frac{\partial u}{\partial x}(2, y)=5,1<y<2$ and $\frac{\partial u}{\partial y}(x, 1)=\frac{\alpha x^{2}}{7}, \frac{\partial u}{\partial y}(x, 2)=x, 1<x<2$ has a solution, then the constant α is \qquad

GATE 2022 Mathematics (MA)

Q. 62	Let $u(x, y)$ be the solution of the first order partial differential equation satisfying $u(2, y)=\left(x^{2}+y\right) \frac{\partial u}{\partial y}=u$, for all $x, y \in \mathbb{R}, y \in \mathbb{R}$. Then, the value of $u(1,2)$ is

GATE 2022 Mathematics (MA)

Q. 63	The optimal value for the linear programming problem $\begin{array}{r} \text { Maximize: } \quad 6 x_{1}+5 x_{2} \\ \text { subject to: } \quad 3 x_{1}+2 x_{2} \leq 12 \\ -x_{1}+x_{2} \leq 1 \\ \\ x_{1}, x_{2} \geq 0 \end{array}$ is \qquad

GATE 2022 Mathematics (MA)

Q. 64	A certain product is manufactured by plants P_{1}, P_{2} and P_{3} whose capacities are 15,25 and 10 units, respectively. The product is shipped to markets M_{1}, M_{2}, M_{3} and M_{4}, whose requirements are $10,10,10$ and 20 , respectively. The transportation costs per unit are given in the table below. Then the cost corresponding to the starting basic solution by the Northwest-corner method is \qquad

GATE 2022 Mathematics (MA)

Q.65	Let M be a 3×3 real matrix such that $M^{2}=2 M+3 I$. If the determinant of M is -9, then the trace of M equals

Q. No.	Session	Question Type	Subject Name	Key/Range	Mark
1	2	MCQ	GA	D	1
2	2	MCQ	GA	A	1
3	2	MCQ	GA	A	1
4	2	MCQ	GA	A	1
5	2	MCQ	GA	C	1
6	2	MCQ	GA	C	2
7	2	MCQ	GA	A	2
8	2	MCQ	GA	B	2
9	2	MCQ	GA	A	2
10	2	MCQ	GA	C	2
11	2	MCQ	MA	D	1
12	2	MCQ	MA	C	1
13	2	MCQ	MA	C	1
14	2	MCQ	MA	D	1
15	2	MCQ	MA	A	1
16	2	MCQ	MA	D	1
17	2	MCQ	MA	C	1
18	2	MCQ	MA	B	1
19	2	MCQ	MA	A	1
20	2	MCQ	MA	A	1
21	2	MCQ	MA	B	1
22	2	MCQ	MA	B	1
23	2	MCQ	MA	D	1
24	2	MCQ	MA	B	1
25	2	MSQ	MA	B, C, D	1
26	2	NAT	MA	30 to 30	1
27	2	NAT	MA	6 to 6	1
28	2	NAT	MA	0.55 to 0.59	1
29	2	NAT	MA	5 to 5	1
30	2	NAT	MA	1 to 1	1
31	2	NAT	MA	39 to 39	1
32	2	NAT	MA	0.65 to 0.68	1
33	2	NAT	MA	1 to 1	1
34	2	NAT	MA	2 to 2	1
35	2	NAT	MA	12 to 12	1
36	2	MCQ	MA	C	2
37	2	MCQ	MA	A	2
38	2	MCQ	MA	D	2
39	2	MCQ	MA	C	2
40	2	MCQ	MA	A	2
41	2	MCQ	MA	A	2
42	2	MCQ	MA	D	2
43	2	MCQ	MA	C	2
44	2	MCQ	MA	D	2

45	2	MCQ	MA	B	2
46	2	MCQ	MA	B	2
47	2	MCQ	MA	B	2
48	2	MCQ	MA	D	2
49	2	MSQ	MA	A, B, C	2
50	2	MSQ	MA	A, C	2
51	2	MSQ	MA	A, B, D	2
52	2	MSQ	MA	C, D	2
53	2	MSQ	MA	A, B	2
54	2	MSQ	MA	B, C, D	2
55	2	MSQ	MA	A, C, D	2
56	2	MSQ	MA	A, B, D	2
57	2	NAT	MA	27 to 27	2
58	2	NAT	MA	0.43 to 0.45	2
59	2	NAT	MA	5.1 to 5.5	2
60	2	NAT	MA	0 to 0	2
61	2	NAT	MA	15 to 15	2
62	2	NAT	MA	1 to 1	2
63	2	NAT	MA	27 to 27	2
64	2	NAT	MA	105 to 105	2
65	2	NAT	MA	5 to 5	2

