General Aptitude (GA)

Q. 1 - Q. 5 Carry ONE mark Each

Q. 1	The village was nestled in a green spot,________ the ocean and the hills.
(A)	through
(B)	in
(C)	at
(D)	between

Q.2	Disagree : Protest : : Agree : ____ (By word meaning)
(A)	Refuse
(B)	Pretext
(C)	Recommend
(D)	Refute

Q.3	A 'frabjous' number is defined as a 3 digit number with all digits odd, and no two adjacent digits being the same. For example, 137 is a frabjous number, while 133 is not. How many such frabjous numbers exist?
(A)	125
(B)	720
(C)	60
(D)	80

Q.4	Which one among the following statements must be TRUE about the mean and the median of the scores of all candidates appearing for GATE 2023?
(A)	The median is at least as large as the mean.
(B)	The mean is at least as large as the median.
(C)	At most half the candidates have a score that is larger than the median.
(D)	At most half the candidates have a score that is larger than the mean.

Q.5 | In the given diagram, ovals are marked at different heights (h) of a hill. Which one |
| :--- |
| of the following options $\mathbf{P}, \mathbf{Q}, \mathbf{R}$, and \mathbf{S} depicts the top view of the hill? |

Q. 6 - Q. 10 Carry TWO marks Each

Q.6	Residency is a famous housing complex with many well-established individuals among its residents. A recent survey conducted among the residents of the complex revealed that all of those residents who are well established in their respective fields happen to be academicians. The survey also revealed that most of these academicians are authors of some best-selling books. Based only on the information provided above, which one of the following statements can be logically inferred with certainty?
(A)	Some residents of the complex who are well established in their fields are also authors of some best-selling books.
(B)	All academicians residing in the complex are well established in their fields.
(C)	Some authors of best-selling books are residents of the complex who are well established in their fields.
(D)	Some academicians residing in the complex are well established in their fields.

Q.7	Ankita has to climb 5 stairs starting at the ground, while respecting the following rules: 1. At any stage, Ankita can move either one or two stairs up. 2. At any stage, Ankita cannot move to a lower step. Let $F(N)$ denote the number of possible ways in which Ankita can reach the $N^{t h}$ stair. For example, $F(1)=1, F(2)=2, F(3)=3$. The value of $F(5)$ is (A) (B) (C)
(D)	5

Q.8	The information contained in DNA is used to synthesize proteins that are necessary for the functioning of life. DNA is composed of four nucleotides: Adenine (A), Thymine (T), Cytosine (C), and Guanine (G). The information contained in DNA can then be thought of as a sequence of these four nucleotides: A, T, C, and G. DNA has coding and non-coding regions. Coding regions-where the sequence of these nucleotides are read in groups of three to produce individual amino acids-constitute only about 2\% of human DNA. For example, the triplet of nucleotides CCG codes for the amino acid glycine, while the triplet GGA codes for the amino acid proline. Multiple amino acids are then assembled to form a protein. Based only on the information provided above, which of the following statements can be logically inferred with certainty?
(i)The majority of human DNA has no role in the synthesis of proteins. (ii) The function of about 98\% of human DNA is not understood.	
(A)	only (i)
(B)	only (ii)
(C)	both (i) and (ii)
(D)	neither (i) nor (ii)

Q. 10	An opaque cylinder (shown below) is suspended in the path of a parallel beam of light, such that its shadow is cast on a screen oriented perpendicular to the direction of the light beam. The cylinder can be reoriented in any direction within the light beam. Under these conditions, which one of the shadows $\mathbf{P}, \mathbf{Q}, \mathbf{R}$, and \mathbf{S} is NOT possible?
(A)	P
(B)	Q
(C)	R
(D)	S

Q. 11 - Q. 35 Carry ONE mark Each

Q. 11	Choose solution set S corresponding to the systems of two equations $\begin{array}{r} x-2 y+z=0 \\ x-z=0 \end{array}$ Note: \Re denotes the set of real numbers
(A)	$S=\left\{\left.\alpha\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right) \right\rvert\, \alpha \in \Omega\right.$,
(B)	$S=\left\{\left.\alpha\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)+\beta\left(\begin{array}{l}1 \\ 0 \\ 1\end{array}\right) \right\rvert\, \alpha, \beta \in \Re\right.$,
(C)	$S=\left\{\left.\alpha\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)+\beta\left(\begin{array}{l}2 \\ 1 \\ 2\end{array}\right) \right\rvert\, \alpha, \beta \in \Re\right.$,
(D)	$S=\left\{\left.\alpha\left(\begin{array}{l}1 \\ 0 \\ 1\end{array}\right) \right\rvert\, \alpha \in \Omega\right.$,

Q.12	Inductance of a coil is measured as 10 mH, using an LCR meter, when no other objects are present near the coil. The LCR meter uses a sinusoidal excitation at 10 kHz . If a pure copper sheet is brought near the coil, the same LCR meter will read_.
(A)	less than 10 mH
(B)	10 mH
(C)	more than 10 mH
(D)	less than 10 mH initially and then stabilizes to more than 10 mH
Q.13	Which of the following flow meters offers the lowest resistance to the flow?
(D)	
(A)	Turbine flow meter
(C)	Vrifice flow meter*
Venturi meter	

Q. 14	Pair the quantities (p) to (s) with the measuring devices (i) to (iv).	
	(i) Linear Variable Differential Transformer (LVDT)	(p) Torque
	(ii) Thermistor	(q) Pressure
	(iii) Strain gauge	(r) Linear position
	(iv) Diaphragm	(s) Temperature
(A)	(i) - (r), (ii) - (s), (iii) - (q), (iv) - (p)	
(B)	(i) - (p), (ii) - (s), (iii) - (r), (iv) - (q)	
(C)	(i) - (r), (ii) - (s), (iii) - (p), (iv) - (q)	
(D)	(i) - (q), (ii) - (s), (iii) - (p), (iv) - (r)	

Q.15	Capacitance ' C ' of a parallel plate structure is calculated as 20 pF using $C=\frac{\varepsilon_{o} \varepsilon_{r} A}{d}$, where ε_{o} is the permittivity of free space, ε_{r} is the relative permittivity of the dielectric, A is the overlapping area of the electrodes and d is the distance between them. The value of C is then measured using an LCR meter. If the meter is assumed to be ideal and it introduces no error due to cable capacitance, which one of the following readings is likely to be correct?
(A)	20.5 pF
(B)	20 pF
(C)	19.5 pF
(D)	10 pF

Q. 22	Choose the fastest logic family among the following:
(A)	Transistor-Transistor Logic
(B)	Emitter-Coupled Logic
(C)	CMOS Logic
(D)	Resistor-Transistor Logic
Q. 23	What is $\lim _{x \rightarrow 0} f(x)$, where $f(x)=x \sin \frac{1}{x}$?
(A)	0
(B)	1
(C)	∞
(D)	Limit does not exist
Q. 24	The number of zeros of the polynomial $P(s)=s^{3}+2 s^{2}+5 s+80$ in the righthalf plane is \qquad ـ.
Q. 25	The number of times the Nyquist plot of $G(s) H(s)=\frac{1}{2} \frac{(s-1)(s-2)}{(s+1)(s+2)}$ encircles the origin is \qquad .

Q. 26	The opamp in the circuit shown is ideal, except that it has an input bias current of 1 nA and an input offset voltage of $10 \mu \mathrm{~V}$. The resulting worst-case output voltage will be \pm \qquad $\mu \mathrm{V}$ (rounded off to the nearest integer).
Q. 27	The force per unit length between two infinitely long parallel conductors, with a gap of 2 cm between them is $10 \mu \mathrm{~N} / \mathrm{m}$. When the gap is doubled, the force per unit length will be \qquad $\mu \mathrm{N} / \mathrm{m}$ (rounded off to one decimal place).
Q. 28	Consider the discrete-time signal $x[n]=u[-n+5]-u[n+3]$, where $u[n]=\left\{\begin{array}{l}1 ; n \geq 0 \\ 0 ; n<0\end{array}\right.$. The smallest n for which $x[n]=0$ is \qquad .
Q. 29	Let $y(t)=x(4 t)$, where $x(t)$ is a continuous-time periodic signal with fundamental period of 100 s . The fundamental period of $y(t)$ is \qquad s (rounded off to the nearest integer).

Q. $30 \quad$| When the bridge given below is balanced, the current through the resistor R_{a} is |
| :--- |
| mA (rounded off to two decimal places). |
| Q. 31 |

Q. 32	X is a discrete random variable which takes values 0,1 and 2 . The probabilities are $P(X=0)=0.25$ and $P(X=1)=0.5$. With $E[$.$] denoting the expectation$ operator, the value of $E[X]-E\left[X^{2}\right]$ is \qquad (rounded off to one decimal place).
Q. 33	The diode in the circuit is ideal. The current source $\mathrm{i}_{\mathrm{s}}(t)=\pi \sin (3000 \pi \mathrm{t}) \mathrm{mA}$. The magnitude of the average current flowing through the resistor R is \qquad mA (rounded off to two decimal places).
Q. 34	The full-scale range of the wattmeter shown in the circuit is 100 W . The turns ratio of the individual transformers are indicated in the figure. The RMS value of the ac source voltage V_{s} is 200 V . The wattmeter reading will be \qquad W (rounded off to the nearest integer).

Q.35	The no-load steady-state output voltage of a DC shunt generator is 200 V when it is driven in the clockwise direction at its rated speed. If the same machine is driven at the rated speed but in the opposite direction, the steady-state output voltage will be_V (rounded off to the nearest integer).

Q. 36 - Q. 65 Carry TWO marks Each

Q.38	In a p-i-n photodiode, a pulse of light containing 8×10^{12} incident photons at wavelength $\lambda_{0}=1.55 \mu$ m gives rise to an average 4×10^{12} electrons collected at the terminals of the device. The quantum efficiency of the photodiode at this wavelength is
(A)	50
(B)	54.2
(C)	62.5
(D)	80
Q.39	Let $f(z)=j \frac{1-z}{1+z}$, where z denotes a complex number and j denotes $\sqrt{-1}$. The inverse function $f(z)$ maps the real axis to the (D) (D) unit circle with centre at the origin (D) real axis imaginary axis

Q. 42	In the circuit shown, the initial binary content of shift register A is 1101 and that of shift register B is 1010. The shift registers are positive-edge triggered, and the gates have no delay. When the shift control is high, what will be the binary content of the shift registers A and B after four clock pulses?					
(A)	$\mathrm{A}=1101, \mathrm{~B}=1101$					
(B)	$\mathrm{A}=1110, \mathrm{~B}=1001$					
(C)	$\mathrm{A}=0101, \mathrm{~B}=1101$					
(D)	$\mathrm{A}=1010, \mathrm{~B}=1111$					

Q. 43	The magnitude and phase plots shown in the figure match with the transferfunction \qquad _.
(A)	$\frac{10000}{s^{2}+2 s+10000}$
(B)	$\frac{10000}{s^{2}+2 s+10000} e^{-0.05 s}$
(C)	$\frac{10000}{s^{2}+2 s+10000} e^{-0.5 \times 10^{-12} s}$
(D)	$\frac{100}{s^{2}+2 s+100}$

Q.44	A continuous real-valued signal $x(t)$ has finite positive energy and $x(t)=0, \forall t<0$. From the list given below, select ALL the signals whose continuous-time Fourier transform is purely imaginary.
(A)	$x(t)+x(-t)$
(B)	$x(t)-x(-t)$
(C)	$j(x(t)+x(-t))$
(D)	$j(x(t)-x(-t))$
Q.45	A silica-glass fiber has a core refractive index of 1.47 and a cladding refractive index of 1.44 . If the cladding is completely stripped out and the core is dipped in water having a refractive index of 1.33, the numerical aperture of the modified fiber is (rounded off to three decimal places).

Q. 55	A sinusoidal current of $\mathrm{i}_{1}(t)=1 \sin (200 \pi t) \mathrm{mA}$ is flowing through a 4 H inductor which is mutually coupled to another 5 H inductor carrying
as shown in the figure. The coupling coefficient between the inductors is 0.6. The	
peak energy stored in the circuit is	
Q. 56	

Q. 62	In the circuit shown, assuming an ideal opamp, the value of the output voltage $\mathrm{V}_{\mathrm{o}}=\ldots \quad \mathrm{V}$ (rounded off to one decimal place).
Q. 63	The rank of the matrix A given below is one. The ratio $\frac{\alpha}{\beta}$ is to the nearest integer).

Q. 65	The voltage source $\mathrm{Vs}=10 \sqrt{2} \sin (20000 \pi t) \mathrm{V}$ has an internal resistance of 50Ω. The RMS value of the current through R is___men (rounded off to one decimal place).

*This option did not appear in GATE 2023 Examination. It appeared as "Turbine flow meter", that is, "Turbine flow meter" option was repeated.

