Graduate Aptitude Test in Engineering 2021 Organising Institute - IIT Bombay

Electrical Engineering (EE)

General Aptitude (GA)

Q. 1 - Q. 5 Multiple Choice Question (MCQ), carry ONE mark each (for each wrong answer: - 1/3).

Q.1	The people of society.
(A)	whore at the demonstration were from all sections
(B)	which
(C)	who
(D)	whom

Graduate Aptitude Test in Engineering 2021 Organising Institute - IIT Bombay

Electrical Engineering (EE)
Q. 2

Graduate Aptitude Test in Engineering 2021 Organising Institute - IIT Bombay

Electrical Engineering (EE)

Q. 3	For a regular polygon having 10 sides, the interior angle between the sides of the polygon, in degrees, is:
(A)	396
(B)	324
(C)	216
(D)	144

Q. 4	Which one of the following numbers is exactly divisible by $\left(11^{13}+1\right) ?$
(A)	$11^{26}+1$
(B)	$11^{33}+1$
(C)	$11^{39}-1$
(D)	$11^{52}-1$

Q. 5	Oasis is to sand as island is to Which one of the following options maintains a similar logical relation in the above sentence?
(A)	Stone
(B)	Land
(C)	Water
(D)	Mountain

Graduate Aptitude Test in Engineering 2021 Organising Institute - IIT Bombay

Electrical Engineering (EE)

Q. 6 - Q. 10 Multiple Choice Question (MCQ), carry TWO marks each (for each wrong answer: - 2/3).

Q.6	The importance of sleep is often overlooked by students when they are preparing for exams. Research has consistently shown that sleep deprivation greatly reduces the ability to recall the material learnt. Hence, cutting down on sleep to study longer hours can be counterproductive. Which one of the following statements is the CORRECT inference from the above passage?
(A)	Sleeping well alone is enough to prepare for an exam. Studying has lesser benefit.
(B)	Students are efficient and are not wrong in thinking that sleep is a waste of time.
(C)	If a student is extremely well prepared for an exam, he needs little or no sleep.
(D)	To do well in an exam, adequate sleep must be part of the preparation.

Q. 7	
(A)	12.50
(B)	6.25
In the figure shown above, each inside square is formed by joining the	
square (shaded) as shown, in cm ${ }^{2}$ is:	
(C)	3.125
(D)	1.5625

Graduate Aptitude Test in Engineering 2021 Organising Institute - IIT Bombay

Electrical Engineering (EE)

Q.8	Let X be a continuous random variable denoting the temperature measured. The range of temperature is $[\mathbf{0 , 1 0 0]}$ degree Celsius and let the probability density function of \boldsymbol{X} be $f(\boldsymbol{x})=\mathbf{0 . 0 1}$ for $\mathbf{0} \leq \boldsymbol{X} \leq \mathbf{1 0 0}$. The mean of X is
(A)	2.5
(B)	5.0
(C)	25.0
(D)	50.0

Graduate Aptitude Test in Engineering 2021 Organising Institute - IIT Bombay

Electrical Engineering (EE)

Q. 9	 The number of students passing or failing in an exam for a particular subject are presented in the bar chart above. Students who pass the exam cannot appear for the exam again. Students who fail the exam in the first attempt must appear for the exam in the following year. Students always pass the exam in their second attempt. The number of students who took the exam for the first time in the year 2 and the year 3 respectively, are \qquad
A)	65 and 53
(B)	60 and 50
(C)	55 and 53
(D)	55 and 48

Graduate Aptitude Test in Engineering 2021 Organising Institute - IIT Bombay

Electrical Engineering (EE)

Q.10	Seven cars P, Q, R, S, T, U and V are parked in a row not necessarily in that order. The cars T and U should be parked next to each other. The cars S and V also should be parked next to each other, whereas P and Q cannot be parked next to each other. Q and S must be parked next to each other. R is parked to the immediate right of V. T is parked to the left of U. Based on the above statements, the only INCORRECT option given below is:
(A)	There are two cars parked in between Q and V.
(B)	Q and R are not parked together.
(C)	V is the only car parked in between S and R.
(D)	Car P is parked at the extreme end.

Graduate Aptitude Test in Engineering 2021 Organising Institute - IIT Bombay

Electrical Engineering (EE)

Electrical Engineering (EE)

Q. 1 - Q. 12 Multiple Choice Question (MCQ), carry ONE mark each (for each wrong answer: - 1/3).

Q.1	Let p and q be real numbers such that $p^{2}+q^{2}=1$. The eigenvalues of
the matrix $\left[\begin{array}{cc}p & q \\ q & -p\end{array}\right]$ are	
(A)	1 and 1
(B)	1 and -1
(C)	j and $-j$
(D)	$p q$ and $-p q$

Q. 2	Let $p(z)=z^{3}+(1+j) z^{2}+(2+j) z+3$, where z is a complex number. Which one of the following is true?
(A)	conjugate $\{p(z)\}=p($ conjugate $\{z\})$ for all z
(B)	The sum of the roots of $p(z)=0$ is a real number
(C)	The complex roots of the equation $p(z)=0$ come in conjugate pairs
(D)	All the roots cannot be real

Graduate Aptitude Test in Engineering 2021 Organising Institute - IIT Bombay

Electrical Engineering (EE)

Q. 3	Let $f(x)$ be a real-valued function such that $f^{\prime}\left(x_{0}\right)=0$ for some
$x_{0} \in(0,1)$, and $f^{\prime \prime}(x)>0$ for all $x \in(0,1)$. Then $f(x)$ has	
(A)	no local minimum in $(0,1)$
(B)	one local maximum in $(0,1)$
(C)	exactly one local minimum in $(0,1)$
(D)	two distinct local minima in $(0,1)$

Q. 4	For the network shown, the equivalent Thevenin voltage and Thevenin impedance as seen across terminals 'ab' is
(A) 10 V in series with 12Ω	
(B) 65 V in series with 15Ω	
(C) 50 V in series with 2Ω	
(D) 35 V in series with 2Ω	

Q. 5	Which one of the following vector functions represents a magnetic field $\overrightarrow{\mathbf{B}}$? ($\hat{\mathrm{x}}, \hat{y}$, and \hat{z} are unit vectors along \mathbf{x}-axis, \mathbf{y}-axis, and z-axis, respectively)
(A)	$10 x \hat{\mathrm{x}}+20 y \hat{\mathrm{y}}-30 z \hat{\mathrm{z}}$
(B)	$10 y \hat{\mathrm{x}}+20 x \hat{\mathrm{y}}-10 z \hat{\mathrm{z}}$
(C)	$10 z \hat{\mathrm{x}}+20 y \hat{\mathrm{y}}-30 x \hat{\mathrm{z}}$
(D)	$10 x \hat{\mathrm{x}}-30 z \hat{\mathrm{y}}+20 y \hat{z}$

Graduate Aptitude Test in Engineering 2021 Organising Institute - IIT Bombay

Electrical Engineering (EE)

Q.6	If the input $x(t)$ and output $y(t)$ of a system are related as $y(t)=\max (0, x(t))$, then the system is
(A)	linear and time-variant
(B)	linear and time-invariant
(C)	non-linear and time-variant
(D)	non-linear and time-invariant

Q. 7	Two discrete-time linear time-invariant systems with impulse responses $h_{1}[n]=\delta[n-1]+\delta[n+1]$ and $h_{2}[n]=\delta[n]+\delta[n-1]$ are connected in cascade, where $\delta[n]$ is the Kronecker delta. The impulse response of the cascaded system is
(A)	$\delta[n-2]+\delta[n+1]$
(B)	$\delta[n-1] \delta[n]+\delta[n+1] \delta[n-1]$
(C)	$\delta[n-2]+\delta[n-1]+\delta[n]+\delta[n+1]$
(D)	$\delta[n] \delta[n-1]+\delta[n-2] \delta[n+1]$

Graduate Aptitude Test in Engineering 2021 Organising Institute - IIT Bombay

Electrical Engineering (EE)

Q. 8	Consider the table given:		
	Constructional feature	Machine type	Mitigation
	(P) Damper bars	(S) Induction motor	(X) Hunting
	(Q) Skewed rotor slots	(T) Transformer	(Y) Magnetic locking
	(R) Compensating winding	(U) Synchronous machine	(Z) Armature reaction
		(V) DC machine	
	The correct combination that relates the constructional feature, machine type and mitigation is		
(A)	P-V-X, Q-U-Z, R-T-Y		
(B)	P-U-X, Q-S-Y, R-V-Z		
(C)	P-T-Y, Q-V-Z, R-S-X		
(D)	P-U-X, Q-V-Y, R-T-Z		

Q. 9	Consider a power system consisting of \boldsymbol{N} number of buses. Buses in this power system are categorized into slack bus, PV buses and PQ buses for load flow study. The number of PQ buses is N_{L}. The balanced Newton-Raphson method is used to carry out load flow study in polar form. $\boldsymbol{H}, \boldsymbol{S}, \boldsymbol{M}$, and \boldsymbol{R} are sub-matrices of the Jacobian matrix \boldsymbol{J} as shown below: $\left[\begin{array}{l}\Delta P \\ \Delta Q\end{array}\right]=J\left[\begin{array}{l}\Delta \delta \\ \Delta V\end{array}\right]$, where $J=\left[\begin{array}{ll}H & S \\ M & R\end{array}\right]$ The dimension of the sub-matrix \boldsymbol{M} is
(A)	$N_{L} \times(N-1)$
(B)	$(N-1) \times\left(N-1-N_{L}\right)$
(C)	$N_{L} \times\left(N-1+N_{L}\right)$
(D)	$(N-1) \times\left(N-1+N_{L}\right)$

Graduate Aptitude Test in Engineering 2021 Organising Institute - IIT Bombay

Electrical Engineering (EE)

Q.10	Two generators have cost functions $\boldsymbol{F}_{\mathbf{1}}$ and \boldsymbol{F}_{2}. Their incremental-cost characteristics are $\frac{d F_{1}}{d P_{1}}=40+0.2 P_{1}$ $\frac{d F_{2}}{d P_{2}}=32+0.4 P_{2}$ They need to deliver a combined load of 260 MW. Ignoring the network losses, for economic operation, the generations P_{1} and P_{2} (in MW) are
(A)	$P_{1}=P_{2}=130$
(B)	$P_{1}=160, P_{2}=100$
(C)	$P_{1}=140, P_{2}=120$
(D)	$P_{1}=120, P_{2}=140$

Graduate Aptitude Test in Engineering 2021 Organising Institute - IIT Bombay

Electrical Engineering (EE)

Q.12	Inductance is measured by
(A)	Schering bridge
(B)	Maxwell bridge
(C)	Kelvin bridge
(D)	Wien bridge

Graduate Aptitude Test in Engineering 2021 Organising Institute - IIT Bombay

Electrical Engineering (EE)

Q. 13 - Q. 25 Numerical Answer Type (NAT), carry ONE mark each (no negative marks).
Q. 13 Suppose the circles $x^{2}+y^{2}=1$ and $(x-1)^{2}+(y-1)^{2}=r^{2}$ intersect each other orthogonally at the point (u, v). Then $u+v=$ \qquad .
Q. 14 In the given circuit, the value of capacitor C that makes current $I=0$ is
\qquad $\mu \mathrm{F}$.

Q. $15 \quad$ Two single-core power cables have total conductor resistances of 0.7Ω and 0.5Ω, respectively, and their insulation resistances (between core and sheath) are $600 \mathrm{M} \Omega$ and $900 \mathrm{M} \Omega$, respectively. When the two cables are joined in series, the ratio of insulation resistance to conductor resistance is
\qquad $\times 10^{6}$.
Q. 16 In the given circuit, for voltage V_{y} to be zero, the value of $\boldsymbol{\beta}$ should be
\qquad . (Round off to 2 decimal places).

Graduate Aptitude Test in Engineering 2021 Organising Institute - IIT Bombay

Electrical Engineering (EE)

Q. 17 A 1μ Cpoint charge is held at the origin of a cartesian coordinate system. If a second point charge of $10 \mu \mathrm{C}$ is moved from $(0,10,0)$ to $(5,5,5)$ and subsequently to $(5,0,0)$, then the total work done is \qquad mJ.
(Round off to 2 decimal places).
Take $\frac{1}{4 \pi \varepsilon_{o}}=9 \times 10^{9}$ in SI units. All coordinates are in meters.
Q. 18 The power input to a $500 \mathrm{~V}, 50 \mathrm{~Hz}$, 6-pole, 3-phase induction motor running at 975 RPM is 40 kW . The total stator losses are 1 kW . If the total friction and windage losses are 2.025 kW , then the efficiency is
\qquad $\%$.
Q. 19

An alternator with internal voltage of $1 \angle \delta_{1} \mathbf{p}$.u and synchronous reactance of 0.4 p .u is connected by a transmission line of reactance 0.1 p.u to a synchronous motor having synchronous reactance $0.35 \mathrm{p} . \mathrm{u}$ and internal voltage of $0.85 \angle \delta_{2}$ p.u. If the real power supplied by the alternator is $\mathbf{0 . 8 6 6}$ p.u, then $\left(\delta_{1}-\delta_{2}\right)$ is \qquad degrees. (Round off to $\mathbf{2}$ decimal places.)
(Machines are of non-salient type. Neglect resistances.)

Graduate Aptitude Test in Engineering 2021 Organising Institute - IIT Bombay

Electrical Engineering (EE)

Q. 21 A signal generator having a source resistance of 50Ω is set to generate a 1 kHz sinewave. Open circuit terminal voltage is 10 V peak-to-peak.
Connecting a capacitor across the terminals reduces the voltage to 8 V peak-to-peak. The value of this capacitor is \qquad $\mu \mathrm{F}$. (Round off to 2 decimal places.)

```
Q. 22 A 16-bit synchronous binary up-counter is clocked with a frequency \(f_{\text {CLK }}\).
The two most significant bits are OR-ed together to form an output Y.
Measurements show that \(Y\) is periodic, and the duration for which \(Y\) remains high in each period is
24 ms . The clock frequency \(f_{\text {CLK }}\) is
``` \(\qquad\)
``` MHz.
(Round off to 2 decimal places.)
```


Graduate Aptitude Test in Engineering 2021 Organising Institute - IIT Bombay

Electrical Engineering (EE)

Graduate Aptitude Test in Engineering 2021 Organising Institute - IIT Bombay

Electrical Engineering (EE)

Q. 26 - Q. 37 Multiple Choice Question (MCQ), carry TWO mark each (for each wrong answer: - 2/3).

Q.26	In the open interval $(0,1)$, the polynomial $p(x)=x^{4}-4 x^{3}+2$ has
(A)	two real roots
(B)	one real root
(C)	three real roots
(D)	no real roots

Q.27	Suppose the probability that a coin toss shows "head" is p, where $0<p<1$. The coin is tossed repeatedly until the first "head" appears. The expected number of tosses required is
(A)	$p /(1-p)$
(B)	$(1-p) / p$
(C)	$1 / p$
(D)	$1 / p^{2}$

Q. 28	Let $(-1-j),(3-j),(3+j)$ and $(-1+j)$ be the vertices of a rectangle C in the complex plane. Assuming that C is traversed in counter-clockwise direction, the value of the contour integral $\oint_{C} \frac{d z}{z^{2}(z-4)}$ is
(A)	$j \pi / 2$
(B)	0
(C)	$-j \pi / 8$
(D)	$j \pi / 16$

Graduate Aptitude Test in Engineering 2021 Organising Institute - IIT Bombay

Electrical Engineering (EE)

Q.29	In the circuit, switch ' \mathbf{S} ' is in the closed position for a very long time. If the switch is opened at time $\mathrm{t}=0$, then $\mathrm{i}_{\mathrm{L}}(\mathrm{t})$ in amperes, for $\mathrm{t} \geq 0$ is
(A) $8 e^{-10 \mathrm{t}}$	
(B)	10
(C)	$8+2 e^{-10 \mathrm{t}}$
(D)	$10\left(1-e^{-2 \mathrm{t}}\right)$

Q. 30	The input impedance, $Z_{i n}(s)$, for the network shown is
(A)	$\frac{23 s^{2}+46 s+20}{4 s+5}$
(B)	$6 s+4$
(C)	$7 s+4$
(D)	$\frac{25 s^{2}+46 s+20}{4 s+5}$

Graduate Aptitude Test in Engineering 2021 Organising Institute - IIT Bombay

Electrical Engineering (EE)

Q.31	The causal signal with z-transform $z^{2}(z-a)^{-2}$ is $(u[n]$ is the unit step signal)
(A)	$a^{2 n} u[n]$
(B)	$(n+1) a^{n} u[n]$
(C)	$n^{-1} a^{n} u[n]$
(D)	$n^{2} a^{n} u[n]$

Q.32	Let $f(t)$ be an even function, i.e. $f(-t)=f(t)$ for all t. Let the Fourier
transform of $f(t)$ be defined as $F(\omega)=\int_{-\infty}^{\infty} f(t) e^{-j \omega t} d t$. Suppose	
	$\frac{d F(\omega)}{d \omega}=-\omega F(\omega)$ for all ω, and $F(0)=1$. Then
(A)	$f(0)<1$
(B)	$f(0)>1$
(C)	$f(0)=1$
(D)	$f(0)=0$

Q.33	In a single-phase transformer, the total iron loss is 2500 W at nominal voltage of 440 V and frequency 50 Hz . The total iron loss is 850 W at $\mathbf{2 2 0} \mathbf{~ V}$ and 25 Hz . Then, at nominal voltage and frequency, the hysteresis loss and eddy current loss respectively are
(A)	1600 W and 900 W
(B)	900 W and 1600 W
(C)	250 W and 600 W
(D)	600 W and 250 W

Graduate Aptitude Test in Engineering 2021 Organising Institute - IIT Bombay

Electrical Engineering (EE)

Q. 34	In the figure shown, self-impedances of the two transmission lines are $\mathbf{1 . 5 j}$ p.u each, and $\mathbf{Z}_{\mathrm{m}}=0.5 \mathrm{j}$ p.u is the mutual impedance. Bus voltages shown in the figure are in p.u. Given that $\delta>0$, the maximum steady-state real power that can be transferred in p.u from Bus-1 to Bus-2 is
(A)	$\|\mathrm{E}\|\|\mathrm{V}\|$
(B)	$\frac{\|\mathrm{E}\|\|\mathrm{V}\|}{2}$
(C)	$2\|\mathrm{E}\|\|\mathrm{V}\|$
(D)	$\frac{3\|\mathrm{E}\|\|\mathrm{V}\|}{2}$

Graduate Aptitude Test in Engineering 2021 Organising Institute - IIT Bombay

Electrical Engineering (EE)

Q. 35	A 3-Bus network is shown. Consider generators as ideal voltage sources. If rows 1, 2 and 3 of the $Y_{\text {Bus }}$ matrix correspond to Bus 1, 2 and 3, respectively, then $Y_{\text {Bus }}$ of the network is
(A)	$\left[\begin{array}{ccc}-4 j & j & j \\ j & -4 j & j \\ j & j & -4 j\end{array}\right] \quad$ (B) $\left[\begin{array}{ccc}-4 j & 2 j & 2 j \\ 2 j & -4 j & 2 j \\ 2 j & 2 j & -4 j\end{array}\right]$
(C)	$\left[\begin{array}{ccc}-\frac{3}{4} \mathrm{j} & \frac{1}{4} \mathrm{j} & \frac{1}{4} \mathrm{j} \\ \frac{1}{4} \mathrm{j} & -\frac{3}{4} \mathrm{j} & \frac{1}{4} \mathrm{j} \\ \frac{1}{4} \mathrm{j} & \frac{1}{4} \mathrm{j} & -\frac{3}{4} \mathrm{j}\end{array}\right] \quad$ (D) $\left[\begin{array}{ccc}-\frac{1}{2} \mathrm{j} & \frac{1}{4} \mathrm{j} & \frac{1}{4} \mathrm{j} \\ \frac{1}{4} \mathrm{j} & -\frac{1}{2} \mathrm{j} & \frac{1}{4} \mathrm{j} \\ \frac{1}{4} \mathrm{j} & \frac{1}{4} \mathrm{j} & -\frac{1}{2} \mathrm{j}\end{array}\right]$

Q.36	Suppose I_{A}, I_{B} and I_{C} are a set of unbalanced current phasors in a three- phase system. The phase-B zero-sequence current $I_{B 0}=0.1 \angle 0^{\circ}$ p.u. If phase-A current $I_{A}=1.1 \angle 0^{\circ}$ p.u and phase-C current $I_{C}=\left(1 \angle 120^{\circ}+0.1\right)$ p.u, then I_{B} in p.u is
(A)	$1 \angle 240^{\circ}-0.1 \angle 0^{\circ}$
(B)	$1.1 \angle 240^{\circ}-0.1 \angle 0^{\circ}$
(C)	$1.1 \angle-120^{\circ}+0.1 \angle 0^{\circ}$
(D)	$1 \angle-120^{\circ}+0.1 \angle 0^{\circ}$

Graduate Aptitude Test in Engineering 2021 Organising Institute - IIT Bombay

Electrical Engineering (EE)

Q. 37	A counter is constructed with three \mathbf{D} flip-flops. The input-output pairs are named (D_{0}, \mathbf{Q}_{0}), ($\left.D_{1}, Q_{1}\right)$, and (D_{2}, \mathbf{Q}_{2}), where the subscript 0 denotes the least significant bit. The output sequence is desired to be the Gray-code sequence $000,001,011,010,110,111,101$, and 100 , repeating periodically. Note that the bits are listed in the $\mathbf{Q}_{2} \mathbf{Q}_{1} \mathbf{Q}_{0}$ format. The combinational logic expression for D_{1} is
(A)	$Q_{2} Q_{1} Q_{0}$
(B)	$\mathrm{Q}_{2} \mathrm{Q}_{0}+\mathrm{Q}_{1} \overline{\mathrm{Q}}_{0}$
(C)	$\bar{Q}_{2} \mathrm{Q}_{0}+\mathrm{Q}_{1} \overline{\mathrm{Q}}_{0}$
(D)	$\mathrm{Q}_{2} \mathrm{Q}_{1}+\bar{Q}_{2} \bar{Q}_{1}$

Graduate Aptitude Test in Engineering 2021 Organising Institute - IIT Bombay

Electrical Engineering (EE)

Q. 38 - Q. 55 Numerical Answer Type (NAT), carry TWO mark each (no negative marks).

Q. 38

Let \mathbf{A} be a 10×10 matrix such that \mathbf{A}^{5} is a null matrix, and let I be the 10×10 identity matrix. The determinant of $\mathbf{A}+\mathbf{I}$ is \qquad -.

Q. 39	A three-phase balanced voltage is applied to the load shown. The phase sequence is RYB . The ratio $\frac{\left\|\mathrm{I}_{\mathrm{B}}\right\|}{\left\|\mathrm{I}_{\mathrm{R}}\right\|}$ is__.

Q. 40	In the given circuit, for maximum power to be delivered to R_{L}, its value should be $\boldsymbol{\Omega} \mathbf{\Omega}$ (Round off to 2 decimal places.)

Graduate Aptitude Test in Engineering 2021 Organising Institute - IIT Bombay

Electrical Engineering (EE)

Q. 41	One coulomb of point charge moving with a uniform velocity $10 \hat{\mathrm{x}} \mathrm{m} / \mathrm{s}$ enters the region $x \geq 0$ having a magnetic flux density $\vec{B}=(10 y \hat{\mathrm{x}}+10 x \hat{\mathrm{y}}+10 \hat{\mathrm{z}}) \mathrm{T}$. The magnitude of force on the charge at $x=0^{+}$is $\quad \mathrm{N}$. $(\hat{\mathrm{x}}, \hat{\mathrm{y}}$, and $\hat{\mathrm{z}}$ are unit vectors along x-axis, y-axis, and z-axis, respectively. $)$

Q.42	Consider a large parallel plate capacitor. The gap d between the two plates is filled entirely with a dielectric slab of relative permittivity 5 . The plates are initially charged to a potential difference of V volts and then disconnected from the source. If the dielectric slab is pulled out completely, then the ratio of the new electric field E_{2} in the gap to the original electric field E_{1} is

Q. 43	Consider a continuous-time signal $x(t)$ defined by $x(t)=0$ for $\|t\|>1$, and $x(t)=1-\|t\|$ for $\|t\| \leq 1$. Let the Fourier transform of $x(t)$ be defined as $X(\omega)=\int_{-\infty}^{\infty} x(t) e^{-j \omega t} d t$. The maximum magnitude of $X(\omega)$ is

Q.44	A belt-driven DC shunt generator running at 300 RPM delivers 100 kW to a 200 V DC grid. It continues to run as a motor when the belt breaks, taking 10 kW from the DC grid. The armature resistance is 0.025Ω, field resistance is 50Ω, and brush drop is 2 V . Ignoring armature reaction, the speed of the motor is RPM. (Round off to 2 decimal places.)

Graduate Aptitude Test in Engineering 2021 Organising Institute - IIT Bombay

Electrical Engineering (EE)
Q. 45 An 8-pole, 50 Hz , three-phase, slip-ring induction motor has an effective rotor resistance of 0.08Ω per phase. Its speed at maximum torque is $\mathbf{6 5 0}$ RPM. The additional resistance per phase that must be inserted in the rotor to achieve maximum torque at start is \qquad Ω. (Round off to 2 decimal places.) Neglect magnetizing current and stator leakage impedance. Consider equivalent circuit parameters referred to stator.

Graduate Aptitude Test in Engineering 2021 Organising Institute - IIT Bombay

Electrical Engineering (EE)

Q. 47	In the given figure, plant $G_{p}(s)=\frac{2.2}{(1+0.1 \mathrm{~s})(1+0.4 \mathrm{~s})(1+1.2 \mathrm{~s})}$ and compensator $G_{c}(s)=K\left(\frac{1+T_{1} s}{1+T_{2} s}\right)$. The external disturbance input is $\mathbf{D}(\mathrm{s})$. It is desired that when the disturbance is a unit step, the steady-state error should not exceed 0.1 unit. The minimum value of K is \qquad (Round off to 2 decimal places.)

Q. 48	The waveform shown in solid line is obtained by clipping a full-wave rectified sinusoid (shown dashed). The ratio of the RMS value of the fullwave rectified waveform to the RMS value of the clipped waveform is \qquad (Round off to 2 decimal places.)

Graduate Aptitude Test in Engineering 2021 Organising Institute - IIT Bombay

Electrical Engineering (EE)

Q. 49	The state space representation of a first-order system is given as
	$\dot{x}=-x+u$
$y=x$	
	where, x is the state variable, u is the control input and y is the controlled output. Let $u=-K x$ be the control law, where K is the controller gain. To place a closed-loop pole at -2, the value of K is

Q.50	An air-core radio-frequency transformer as shown has a primary winding and a secondary winding. The mutual inductance M between the windings of the transformer is (Round off to 2 decimal places.)

Q.51	A 100 Hz square wave, switching between 0 V and 5 V , is applied to a CR high-pass filter circuit as shown. The output voltage waveform across the resistor is 6.2 V peak-to-peak. If the resistance R is 820Ω, then the value C is $\mu \mathrm{F}$. (Round off to 2 decimal places.)

Graduate Aptitude Test in Engineering 2021 Organising Institute - IIT Bombay

Electrical Engineering (EE)

Q. 52	A CMOS Schmitt-trigger inverter has a low output level of 0 V and a high output level of 5 V . It has input thresholds of 1.6 V and 2.4 V . The input capacitance and output resistance of the Schmitt-trigger are negligible. The frequency of the oscillator shown is (Round off to 2 decimal places.)

Q. 53	Consider the boost converter shown. Switch Q is operating at 25 kHz with a duty cycle of 0.6 . Assume the diode and switch to be ideal. Under steady- state condition, the average resistance $\mathrm{R}_{\text {in }}$ as seen by the source is $\frac{\Omega .}{\text { (Round off to } 2 \text { decimal places.) }}$

Graduate Aptitude Test in Engineering 2021 Organising Institute - IIT Bombay

Electrical Engineering (EE)

END OF THE QUESTION PAPER

