General Aptitude (GA)

Q. 1 - Q. 5 Carry ONE mark Each

Q. 1	"I cannot support this proposal. My ___ will not permit it."
(A)	conscious
(B)	consensus
(C)	conscience
(D)	consent

Q.2	Courts : (By word meaning)
(A)	Judiciary Parliament : Legislature
(B)	Executive
(C)	Governmental
(D)	Legal

Q.3	What is the smallest number with distinct digits whose digits add up to 45?
(A)	123555789
(B)	123457869
(C)	123456789
(D)	99999

Q.4	In a class of 100 students, (i) \quadthere are 30 students who neither like romantic movies nor comedy movies, (ii) the number of students who like romantic movies is twice the number of (iii) the number of students who like both romantic movies and comedy movies is 20. How many students in the class like romantic movies?
(A)	40
(B)	20
(C)	60
(D)	30

Q. 5	How many rectangles are present in the given figure?
(A)	8
(B)	9
(C)	10
(D)	12

Q. 6 - Q. 10 Carry TWO marks Each

Q.6	Forestland is a planet inhabited by different kinds of creatures. Among other creatures, it is populated by animals all of whom are ferocious. There are also creatures that have claws, and some that do not. All creatures that have claws are ferocious. Based only on the information provided above, which one of the following options can be logically inferred with certainty?
(A)	All creatures with claws are animals.
(B)	Some creatures with claws are non-ferocious.
(C)	Some non-ferocious creatures have claws.
(D)	Some ferocious creatures are creatures with claws.

Q.7	Which one of the following options represents the given graph?
(A)	$f(x)=x^{2} 2^{-\|x\|}$
(B)	$f(x)=x 2^{-\|x\|}$
(C)	$f(x)=\|x\| 2^{-x}$
(D)	$f(x)=x 2^{-x}$

Q.8	Which one of the following options can be inferred from the given passage alone? When I was a kid, I was partial to stories about other worlds and interplanetary travel. I used to imagine that I could just gaze off into space and be whisked to another planet. [Excerpt from The Truth about Stories by T. King]				
(A)	It is a child's description of what he or she likes.	$	$	(B)	It is an adult's memory of what he or she liked as a child.
:---	:---				
(C)	The child in the passage read stories about interplanetary travel only in parts.				

Q. 9	Out of 1000 individuals in a town, 100 unidentified individuals are covid positive. Due to lack of adequate covid-testing kits, the health authorities of the town devised a strategy to identify these covid-positive individuals. The strategy is to: (i) Collect saliva samples from all 1000 individuals and randomly group them into sets of 5 . (ii) Mix the samples within each set and test the mixed sample for covid. (iii) If the test done in (ii) gives a negative result, then declare all the 5 individuals to be covid negative. (iv) If the test done in (ii) gives a positive result, then all the 5 individuals are separately tested for covid. Given this strategy, no more than \qquad testing kits will be required to identify all the 100 covid positive individuals irrespective of how they are grouped.
(A)	700
(B)	600
(C)	800
(D)	1000

Q.10	A $100 \mathrm{~cm} \times 32 \mathrm{~cm}$ rectangular sheet is folded 5 times. Each time the sheet is folded, the long edge aligns with its opposite side. Eventually, the folded sheet is a rectangle of dimensions $100 \mathrm{~cm} \times 1 \mathrm{~cm}$. The total number of creases visible when the sheet is unfolded is (A) 32
(B)	5
(C)	31
(D)	63

Q. 11 - Q. 35 Carry ONE mark Each

Q. 11	The major product formed in the given reaction is
	DME: 1,2-Dimethoxyethane
(A)	
(B)	
(C)	
(D)	

Q. 12 (A) compound which gives a fragment at $\mathrm{m} / \mathrm{z}=124[\mathrm{M}+\mathrm{H}]^{+}$is
Q. 13 The major product formed in the given reaction is
Q. 14

Q. 15	On irradiation using UV light ($>300 \mathrm{~nm}$), compounds \mathbf{X} and \mathbf{Y}, predominantly, undergo
	 X
(A)	X: Norrish type I reaction and \mathbf{Y} : Norrish type II reaction
(B)	\mathbf{X} : Norrish type II reaction and \mathbf{Y} : Norrish type I reaction
(C)	Both \mathbf{X} and \mathbf{Y} : Norrish type I reaction
(D)	Both \mathbf{X} and \mathbf{Y} : Norrish type II reaction
Q. 16	The topicity relationship of $\mathbf{H}_{\mathbf{a}}$ and \mathbf{H}_{b} in X, Y and Z are, respectively,
	 X Y Z
(A)	Diastereotopic, Homotopic and Enantiotopic
(B)	Homotopic, Enantiotopic and Enantiotopic
(C)	Homotopic, Homotopic and Enantiotopic
(D)	Diastereotopic, Enantiotopic and Homotopic

Q. 17
Q. 18

Q. 21	Wacker oxidation of alkenes is catalyzed by a combination of
(A)	$\mathrm{Pd}(\mathrm{II})$ and $\mathrm{Cu}(\mathrm{II})$
(B)	Co (II) and $\mathrm{Cu}(\mathrm{II})$
(C)	Pd (II) and $\mathrm{Ni}(\mathrm{II})$
(D)	$\mathrm{Pd}(\mathrm{II})$ and Co (II)
Q. 22	For the conversion of $\left[\mathrm{Pt}(\mathrm{L}) \mathrm{Cl}_{3}\right]^{-}$to trans- $\left[\mathrm{Pt}(\mathrm{L}) \mathrm{Cl}_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$, the trans-effect is LEAST when the ligand L is
(A)	$\mathrm{H}_{2} \mathrm{O}$
(B)	NH_{3}
(C)	DMSO
(D)	$\mathrm{C}_{2} \mathrm{H}_{4}$

Q.23	The tetracoordinated copper center in the oxidized and reduced forms of plastocyanin exhibits longest bond with
(A)	cysteine-S and methionine-S, respectively
(B)	methionine-S and cysteine-S, respectively
(C)	cysteine-S and cysteine-S, respectively
(D)	methionine-S and methionine-S, respectively
Q.24	The packing efficiency (in \%) of spheres for a body-centered cubic (bcc) lattice is approximately
(A)	74
(B)	68
(C)	60

Q.25	The magnitudes of CFSE in $\left[\mathrm{M}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{n+}$ for Mn and Fe ions satisfy the relations
(A)	$\mathrm{Mn}^{2+}<\mathrm{Mn}^{3+}$ and $\mathrm{Fe}^{2+}<\mathrm{Fe}^{3+}$
(B)	$\mathrm{Mn}^{2+}>\mathrm{Mn}^{3+}$ and $\mathrm{Fe}^{2+}>\mathrm{Fe}^{3+}$
(C)	$\mathrm{Mn}^{2+}<\mathrm{Mn}^{3+}$ and $\mathrm{Fe}^{2+}>\mathrm{Fe}^{3+}$
(D)	$\mathrm{Mn}^{2+}>\mathrm{Mn}^{3+}$ and $\mathrm{Fe}^{2+}<\mathrm{Fe}^{3+}$

Q.26

Q.27	Point group of naphthalene $\left(\mathrm{C}_{10} \mathrm{H}_{8}\right)$ is
(A)	$D_{2 d}$
(B)	$D_{2 h}$
(C)	$D_{3 d}$
(D)	$D_{3 h}$
Q.28	The INCORRECT statement is
(A)	Zero-point energy of a quantum mechanical harmonic oscillator of frequency v is $\frac{h v}{2}$
(B)	Energy level of a quantum mechanical rigid rotor is inversely proportional to its moment of inertia
(C)	The time independent Schrödinger equation for Li ${ }^{2+}$ cannot be solved exactly
Total angular momentum of an atomic system is equal to the sum of orbital angular	
momentum and spin angular momentum	

Q.29	For an ideal gas, the molecular partition function in the canonical ensemble, that is proportional to the system volume (V, is the
(A)	vibrational partition function
(B)	rotational partition function
(C)	electronic partition function
(D)	translational partition function
Q.30	Assertion (S): The total angular momentum for light atoms (low atomic number) is obtained by Russell-Saunders coupling, whereas $j j$-coupling is used for heavy atoms (high atomic number). Reasoning (R): The spin-orbit interactions are weak in light atoms (low atomic number) and strong in heavy atoms (high atomic number). The correct option is
(D)	S is false but \mathbf{R} is true
(B)	S and \mathbf{R} are true; but \mathbf{R} is NOT the correct reason for \mathbf{S}
(C)	S is true but \mathbf{R} is false
(A)	S and \mathbf{R} are true; and \mathbf{R} is the correct reason for \mathbf{S}
	(D)

Q. 31	The acetolysis product(s) of the given reaction is(are)
(A)	
(B)	
(C)	
(D)	

Q. 32 Product(s) formed in the given reaction is(are)

Q. 33	The choice(s) that correctly identify radioisotopes $(\mathrm{P}, \mathrm{Q}, \mathrm{R}, \mathrm{S})$ shown in the following nuclear reaction is(are)
(A)	$\mathrm{P}={ }_{30}^{64} \mathrm{Zn}$
(B)	$\mathrm{Q}={ }_{30}^{63} \mathrm{Zn}$
(C)	$\mathrm{R}={ }_{29}^{62} \mathrm{Cu}$
(D)	$\mathrm{S}={ }_{29}^{62} \mathrm{Cu}$
Q. 34	For the Lindemann-Hinshelwood mechanism of gas phase unimolecular reactions, the true statement(s) is(are)
(A)	Only molecules with three or more atoms can follow the Lindemann-Hinshelwood mechanism
(B)	Lindemann-Hinshelwood mechanism involves bimolecular elementary steps
(C)	The overall reaction is of second order at low pressure
(D)	The overall reaction is of second order at high pressure

Q.35	The calculated magnetic moment of $\left[\mathrm{Ce}\left(\mathrm{NO}_{3}\right)_{5}\right]^{2-}$ is___ BM. (rounded off to two decimal places) (Given: atomic number of Ce is 58)

Q. 36 - Q. 65 Carry TWO marks Each

Q. 36	A compound, $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{O}_{2}$, has the following spectral data; ${ }^{1} \mathrm{H}$ NMR (ppm): $9.16(\mathrm{~s}), 6.89(\mathrm{~d}, J=8 \mathrm{~Hz}), 6.64(\mathrm{~d}, J=8 \mathrm{~Hz}), 1.53(\mathrm{~s})$ ${ }^{13}$ C NMR (ppm): 154.7, 140.9, 127.1, 114.4, 40.7, 30.7 The structure of the compound is
(A)	
(B)	
(C)	
(D)	

(B) 37
Q. 38
Q. 39 (M and N in the given reaction scheme are

Q. 40	In the ${ }^{1} \mathrm{H}$ NMR spectrum, multiplicity of the signal (bold and underlined H atom) in the following species is (I) $\left[\underline{\mathrm{HNi}}\left(\mathrm{OPEt}_{3}\right)_{4}\right]^{+}$ (II) $\mathrm{Ph}_{2} \mathrm{Si}(\mathrm{Me}) \underline{\mathbf{H}}$ (III) PH_{3} (IV) $\left(\overline{\mathrm{Cp}}^{*}\right)_{2} \mathrm{Zr} \underline{\mathrm{H}}_{2}(\mathrm{Cp} *=$ pentamethylcyclopentadienyl)
(A)	I- pentet, II- quartet, III- doublet and IV- singlet
(B)	I- pentet, II- singlet, III- singlet and IV- doublet
(C)	I- triplet, II- triplet, III- doublet and IV- doublet
(D)	I- singlet, II- quartet, III- singlet and IV- singlet
Q. 41	The major product obtained by the treatment of $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{Ni}$ with $\mathrm{Na} / \mathrm{Hg}$ in ethanol is
(A)	$\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)\left(\eta^{3}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Ni}$
(B)	$\left(\eta^{3}-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{Ni}$
(C)	$\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)\left(\eta^{3}-\mathrm{C}_{5} \mathrm{H}_{7}\right) \mathrm{Ni}$
(D)	$\left(\eta^{3}-\mathrm{C}_{5} \mathrm{H}_{7}\right)_{2} \mathrm{Ni}$

Q. 42	The number of shared corners of the constituent SiO_{4} units in orthosilicate, pyrosilicate, cyclic silicate and sheet silicate, respectively, are
(A)	$0,1,2$ and 3
(B)	2, 3, 0 and 1
(C)	$0,3,1$ and 2
(D)	1,2,3 and 0
Q. 43	Concentration of Q in a consecutive reaction $P \xrightarrow{k_{1}} Q \xrightarrow{k_{2}} R$ is given by $[Q]=\frac{k_{1}[P]_{0}}{k_{2}-k_{1}}\left[e^{-k_{1} t}-e^{-k_{2} t}\right]$, where $[P]_{0}$ is the initial concentration of P . If the value of $k_{2}=25 \mathrm{~s}^{-1}$, the value of k_{1} that leads to the longest waiting time for Q to reach its maximum is
(A)	$k_{1}=20 \mathrm{~s}^{-1}$
(B)	$k_{1}=25 \mathrm{~s}^{-1}$
(C)	$k_{1}=30 \mathrm{~s}^{-1}$
(D)	$k_{1}=35 \mathrm{~s}^{-1}$

Q.44	The wavefunction for Be^{3+} in a certain state is given by $\psi=N e^{-\left(\frac{4}{a_{0}} r\right)}$, where N is the normalization constant, r is the distance of electron from the nucleus and a_{0} is the Bohr radius. The most probable distance of the electron from the nucleus in this state is
(A)	$4 a_{0}$
(B)	$\frac{a_{0}}{4}$
(C)	$8 a_{0}$
(D)	$\frac{a_{0}}{8}$

Q. 46	In the scheme below,
	I_{a} represents the intensity of the light absorbed. Assuming that the quantum yield of the first step is one, the steady state concentration of Q is given by
(A)	$\sqrt{\frac{I_{a}}{k_{1}+k_{2}}}$
(B)	$\sqrt{\frac{I_{a}\left[\mathrm{P}_{2}\right]}{k_{1}+k_{2}}}$
(C)	$\frac{I_{a}}{k_{1}+k_{2}}$
(D)	$\frac{I_{a}\left[\mathrm{P}_{2}\right]}{k_{1}+k_{2}}$

(B. 47
(B)

Q. 49	The stereoisomer(s) of \mathbf{G} giving the depicted product is(are)
	G
(A)	
(B)	
(C)	
(D)	

(A. 50
Q. 51 The reaction(s) in which inversion of configuration occur(s) is(are)

Q. 52	The correct statement(s) regarding myoglobin (Mb) and haemoglobin (Hb) is(are)
(A)	At low partial pressure of O_{2} (e.g., 5 kPa), the O_{2} affinity of Hb lowers upon lowering the pH
(B)	Binding of the first O_{2} molecule to Hb results in lower affinity for the binding of second O_{2} molecule
(C)	Metal center in deoxy-Mb is low-spin whereas it is high-spin in the case of oxy-Mb
(D)	One end of O_{2} binds to the metal center in oxy- Mb and the other end of the bound O_{2} is H -bonded with imidazole-NH of a distal histidine
Q. 53	The correct statement(s) regarding $\mathrm{Co}_{2}(\mathrm{CO})_{8}$ is(are)
(A)	It reacts with Na to give $\mathrm{Na}\left[\mathrm{Co}(\mathrm{CO})_{4}\right]$
(B)	It contains three bridging carbonyls
(C)	It can be prepared by reductive carbonylation of $\mathrm{Co}(\mathrm{OAc})_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}$
(D)	Two isomers exist in hexane solution

Q. 54	The compound(s) having [Xe] $4 f^{1}$ configuration is(are) (Given the atomic numbers Ce:58, Lu:71, Pr:59 and Nd:60)
(A)	$\mathrm{Na}_{3}\left[\mathrm{Ce}\left(\mathrm{NO}_{3}\right)_{6}\right]$
(B)	$\mathrm{Na}_{3}\left[\mathrm{LuCl}_{6}\right]$
(C)	PrO_{2}
(D)	$\mathrm{Nd}\left(\mathrm{NR}_{2}\right)_{3}\left(\mathrm{R}=\mathrm{SiMe}_{3}\right)$
Q. 55	The correct statement(s) for XeF_{2} is(are)
(A)	Its bonding is best explained by classical 2-centered-2-electron bonds
(B)	Its bonding is best explained by a non-classical 3-centered-4-electron bond
(C)	It contains nine lone pairs of electrons
(D)	Its point group is $D_{\infty h}$

Q.56	For the non-dissociative adsorption of a gas on solid, (i) the Freundlich isotherm is given by $\theta=k p^{1 / n}$ where θ is surface coverage, p is pressure, k and n are empirical constants; and (ii) the BET isotherm is given by $\frac{p}{p^{*}-p}=\frac{\theta}{c}+\theta(c-1)\left(\frac{p}{p^{*}}\right)$ where p^{*} and c are empirical constants, and $p<p^{*}$. The correct statement(s) is(are)
(A)	At low surface coverage, the Langmuir isotherm reduces to the Freundlich isotherm with $n=1$
(B)	At high surface coverage, the Langmuir isotherm reduces to the Freundlich isotherm with $n=\infty$
(C) At very low pressure $\left(p \ll p^{*}\right)$, the BET isotherm reduces to the Langmuir isotherm	

Q. 57	Two different enzyme catalysis reactions I and II have identical Y-intercepts for the Lineweaver-Burke (equation given below) plots. The slope for reaction I is twice than that of reaction II. If the initial concentrations of enzymes in I and II are same, the correct statement(s) is(are)
	$\frac{1}{v}=\frac{1}{v_{\max }}+\frac{K_{M}}{v_{\max }} \frac{1}{[S]}$ where v and $v_{\max }$ are rate and maximum rate; K_{M} is Michaelis-Menten constant, and $[\mathrm{S}]$ is substrate concentration.
(A)	Reactions I and II have same turn over number
(B)	Michaelis-Menten constants for reactions I and II are identical
(C)	Michaelis-Menten constant for reaction I is twice than that of reaction II
(D)	The rates of the elementary steps for reactions I and II are identical

Q. 58	The enthalpy change for the exothermic reaction between BeI_{2} and HgF_{2} is $\mathrm{kJ} \mathrm{mol}^{-1}$ (rounded off to the nearest integer) $\left(\right.$ Given: Bond dissociation energy (in $\mathrm{kJ} \mathrm{mol}^{-1}$) for $\mathrm{Be}-\mathrm{F}=632, \mathrm{Be}-\mathrm{I}=289$, $\mathrm{Hg}-\mathrm{F}=268$ and $\mathrm{Hg}-\mathrm{I}=145)$

END OF QUESTION PAPER

