Graduate Aptitude Test in Engineering 2021 Organising Institute - IIT Bombay

Chemistry (CY)

General Aptitude (GA)

Q. 1 - Q. 5 Multiple Choice Question (MCQ), carry ONE mark each (for each wrong answer: - 1/3).

Q.1	Getting to the top is___ than staying on top.
(A)	more easy
(B)	much easy
(C)	easiest
(D)	easier

Q. 2	The mirror image of the above text about the x-axis is
(A)	LB\|FVEFE
(B)	
(C)	
(D)	

Graduate Aptitude Test in Engineering 2021

Chemistry (CY)

Q.3	In a company, 35% of the employees drink coffee, $\mathbf{4 0 \%}$ of the employees drink tea and 10% of the employees drink both tea and coffee. What $\%$ of employees drink neither tea nor coffee?
(A)	15
(B)	25
(C)	35
(D)	40

Q.4	\oplus and \odot are two operators on numbers \boldsymbol{p} and \boldsymbol{q} such that $p \oplus q=\frac{p^{2}+q^{2}}{p q}$ and $\boldsymbol{p} \odot \boldsymbol{q}=\frac{\boldsymbol{p}^{2}}{\boldsymbol{q}} ;$ If $\boldsymbol{x} \oplus \boldsymbol{y}=\mathbf{2} \odot \mathbf{2}$, then $x=$
(A)	$\frac{y}{2}$
(B)	y
(C)	$\frac{3 y}{2}$
(D)	$2 y$

Q.5	Four persons $\mathbf{P}, \mathbf{Q}, \mathbf{R}$ and S are to be seated in a row, all facing the same direction, but not necessarily in the same order. \mathbf{P} and \mathbf{R} cannot sit adjacent to each other. S should be seated to the right of \mathbf{Q}. The number of distinct seating arrangements possible is:
(A)	2
(B)	4
(C)	6
(D)	8

Graduate Aptitude Test in Engineering 2021 Organising Institute - IIT Bombay
Q. 6 - Q. 10 Multiple Choice Question (MCQ), carry TWO marks each (for each wrong answer: - 2/3).

Q.6	Statement: Either P marries Q or X marries Y Among the options below, the logical NEGATION of the above statement is:
(A)	P does not marry Q and X marries Y.
(B)	Neither P marries Q nor X marries Y.
(C)	X does not marry Y and P marries Q.
(D)	P marries Q and X marries Y.

Q. 7	Consider two rectangular sheets, Sheet M and Sheet \mathbf{N} of dimensions $\mathbf{6} \mathbf{c m} \mathbf{x} \mathbf{4}$ cm each. Folding operation 1: The sheet is folded into half by joining the short edges of the current shape. Folding operation 2: The sheet is folded into half by joining the long edges of the current shape. Folding operation $\mathbf{1}$ is carried out on Sheet \mathbf{M} three times. Folding operation $\mathbf{2}$ is carried out on Sheet \mathbf{N} three times. The ratio of perimeters of the final folded shape of Sheet \mathbf{N} to the final folded shape of Sheet \mathbf{M} is (A) $13: 7$ (B) (C) (D: (D)

Chemistry (CY)

Q.8	
Five line segments of equal lengths, PR, PS, QS, QT and RT are used to	
form a star as shown in the figure above.	
The value of $\boldsymbol{\theta}$, in degrees, is	
(A)	36
(B)	45
(C)	72
(D)	108

Q.9	A function, λ, is defined by $\lambda(p, q)= \begin{cases}(p-q)^{2}, & \text { if } p \geq q, \\ p+q, & \text { if } p<q .\end{cases}$ The value of the expression $\frac{\lambda(-(-3+2),(-2+3))}{(-(-2+1))}$ is:
(A)	-1
(B)	0
(C)	$\frac{16}{3}$
(D)	16

Graduate Aptitude Test in Engineering 2021 Organising Institute - IIT Bombay

Chemistry (CY)

Q.10	Humans have the ability to construct worlds entirely in their minds, which don't exist in the physical world. So far as we know, no other species possesses this ability. This skill is so important that we have different words to refer to its different flavors, such as imagination, invention and innovation. Based on the above passage, which one of the following is TRUE?
(A)	No species possess the ability to construct worlds in their minds.
(B)	The terms imagination, invention and innovation refer to unrelated skills.
(C)	We do not know of any species other than humans who possess the ability to construct mental worlds.
(D)	Imagination, invention and innovation are unrelated to the ability to construct mental worlds.

Graduate Aptitude Test in Engineering 2021 Organising Institute - IIT Bombay

Chemistry (CY)

Q. 1 - Q. 14 Multiple Choice Question (MCQ), carry ONE mark each (for each wrong answer: - 1/3).

Q.1	The rates of alkaline hydrolysis of the compounds shown below
	follow the order:
(A)	$\mathbf{I}>$ II $>$ III
(B)	II $>$ I $>$ III
(C)	II $>$ III $>$ I
(D)	III $>$ I $>$ II

Q. 2	The major product formed in the following reaction is:
(A)	
(B)	
(C)	
(D)	

Graduate Aptitude Test in Engineering 2021 Organising Institute - IIT Bombay
Q. 3 The major product formed in the following reaction

Q. 4	The least acidic among the following compounds	
	is:	
(A)	\mathbf{M}	
(B)	\mathbf{N}	
(C)	\mathbf{O}	
(D)	\mathbf{P}	

Graduate Aptitude Test in Engineering 2021 Organising Institute - IIT Bombay

Chemistry (CY)

Q. 5	The major product formed in the following reaction is:
(A)	
(B)	
(C)	
(D)	

Q.6	The reagent(s) required for the conversion of hex-3-yne to $(\boldsymbol{E}$)-hex-3-ene is/are:
(A)	$\mathrm{H}_{2}, \mathrm{Pd} / \mathrm{BaSO}_{4}$
(B)	$\mathrm{Bu}_{3} \mathrm{SnH}$
(C)	$\mathrm{Li} /$ liquid NH_{3}
(D)	LiAlH_{4}

Graduate Aptitude Test in Engineering 2021

Q.7	An organic compound exhibits the $[\mathrm{M}]^{+},[\mathrm{M}+2]^{+}$and $[\mathrm{M}+4]^{+}$peaks in the intensity ratio 1:2:1 in the mass spectrum, and shows a singlet at $\delta \mathbf{7 . 4 9}$ in the ${ }^{\mathbf{1}} \mathrm{H}$ NMR spectrum in $\mathrm{CDCl}_{\mathbf{3}}$. The compound is:
(A)	1,4-dichlorobenzene
(B)	1,4-dibromobenzene
(C)	1,2-dibromobenzene
(D)	1,2-dichlorobenzene

Q.8	Reaction of LiAlH_{4} with one equivalent of $\mathrm{Me}_{3} \mathrm{~N} \cdot \mathbf{H C l}$ gives a tetrahedral compound, which reacts with another equivalent of Me $\mathbf{N} \cdot \mathrm{HCl}$ to give compound N. The compound \mathbf{N} and its geometry, respectively, are:
(A)	$\mathrm{LiAlH}_{4} \mathrm{NMe}_{3}$ and trigonal bipyramidal
(B)	$\mathrm{Li}_{2} \mathrm{AlH}_{4} \mathrm{Cl}$ and square pyramidal
(C)	$\mathrm{AlH}_{3}\left(\mathrm{NMe}_{3}\right)_{2}$ and trigonal bipyramidal
(D)	$\mathrm{AlH}_{3}\left(\mathrm{NMe}_{3}\right)_{2}$ and pentagonal

Q.9	Which one of the following is a non-heme protein?
(A)	hemoglobin
(B)	hemocyanin
(C)	myoglobin
(D)	cytochrome P-450

Graduate Aptitude Test in Engineering 2021 Organising Institute - IIT Bombay

Chemistry (CY)

Q.10	A correct example of a nucleotide is:
(A)	adenosine monophosphate (AMP)
(B)	RNA
(C)	uridine
(D)	DNA

Q.11	The equilibrium constant for the reaction $\mathbf{3} \mathbf{N O}(\mathrm{g}) \rightleftharpoons \mathbf{N}_{\mathbf{2}} \mathbf{O}(\mathrm{g})+\mathbf{N O}_{\mathbf{2}}(\mathrm{g})$ at $\mathbf{2 5}{ }^{\circ} \mathbf{C}$ is closest to: $\left[\Delta \mathbf{G}^{\circ}=\mathbf{- 1 0 4 . 1 8} \mathbf{~ k J} ; R=\mathbf{8 . 3 1 4} \mathbf{~ J ~ m o l}^{\mathbf{- 1}} \mathbf{K}^{\mathbf{- 1}}\right]$
(A)	1.043
(B)	1.8×10^{18}
(C)	1.651
(D)	5.7×10^{-19}

Q.12	The reaction of NiBr_{2} with two equivalents of PPh_{3} in CS_{2} at $-78{ }^{\circ} \mathbf{C}$ gives a red-colored diamagnetic complex, $\left[\mathrm{NiBr}_{2}\left(\mathbf{P P h}_{3}\right)_{2}\right]$. This transforms to a green-colored paramagnetic complex with the same molecular formula at 25 ${ }^{\circ} \mathbf{C}$. The geometry and the number of unpaired electrons in the green-colored complex, respectively, are:
(A)	tetrahedral and 1
(B)	tetrahedral and 2
(C)	square planar and 2
(D)	square planar and 4

Graduate Aptitude Test in Engineering 2021 Organising Institute - IIT Bombay

Chemistry (CY)

Q.13	The rate of the substitution reaction of $\left[\mathbf{C o}(\mathbf{C N})_{5} \mathrm{Cl}\right]^{3-}$ with $\mathbf{O H}^{-}$to give $\left[\mathbf{C o}(\mathbf{C N})_{5}(\mathbf{O H})\right]^{3-}$
(A)	depends on the concentrations of both $\left[\mathrm{Co}(\mathrm{CN})_{5} \mathrm{Cl}\right]^{3-}$ and OH^{-}
(B)	depends on the concentration of $\left[\mathrm{Co}(\mathrm{CN})_{5} \mathrm{Cl}\right]^{3-}$ only
(C)	is directly proportional to the concentration of OH^{-}only
(D)	is inversely proportional to the concentration of OH^{-}

Q.14	The Δ_{o} of $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+},\left[\mathrm{CrF}_{6}\right]^{3-}$ and $\left[\mathrm{Cr}(\mathrm{CN})_{6}\right]^{3-}$ follows the order:
(A)	$\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}>\left[\mathrm{CrF}_{6}\right]^{3-}>\left[\mathrm{Cr}(\mathrm{CN})_{6}\right]^{3-}$
(B)	$\left[\mathrm{CrF}_{6}\right]^{3-}>\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}>\left[\mathrm{Cr}(\mathrm{CN})_{6}\right]^{3-}$
(C)	$\left[\mathrm{Cr}_{\left.(\mathrm{CN})_{6}\right]^{3-}>\left[\mathrm{Cr}^{3}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}>\left[\mathrm{CrF}_{6}\right]^{3-}}\right.$
(D)	$\left[\mathrm{CrF}_{6}\right]^{3-}>\left[\mathrm{Cr}(\mathrm{CN})_{6}\right]^{3-}>\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$

Graduate Aptitude Test in Engineering 2021 Organising Institute - IIT Bombay
Q. 15 - Q. 18 Multiple Select Question (MSQ), carry ONE mark each (no negative marks).

Q.15	The phase diagram of $\mathbf{C O}_{\mathbf{2}}$ is shown below:
The correct statement(s) about CO $_{2}$ is/are:	
(A)	Below T_{c}, it does not exist in liquid state.
(B)	Above T_{C}, it does not exist in liquid state.
(C)	At $\mathrm{T}_{\mathrm{c},}$, it can exist in all three phases.
(D)	Above T_{1}, it does not exist in solid state.

Graduate Aptitude Test in Engineering 2021
Organising Institute - IIT Bombay

Chemistry (CY)

Q.16	Acceptable wavefunctions for a quantum particle must be:
(A)	odd
(B)	even
(C)	single-valued
(D)	continuous

Q. 17	The characters of $\boldsymbol{E}, \boldsymbol{C}_{2}, \sigma_{v}$, and $\boldsymbol{\sigma}^{\prime}{ }_{v}$ symmetry operations, in this order, for valid irreducible representation(s) of the $\boldsymbol{C}_{\mathbf{2} \boldsymbol{v}}$ point group is/are:
(A)	$1,1,1,1$
(B)	$-1,1,1,-1$
(C)	$1,-1,1,-1$
(D)	$1,-1,-1,-1$

Q. 18	The normal mode(s) of vibration of $\mathrm{H}_{2} \mathrm{O}$ is/are:
(A)	(B)
(D)	
(D)	

Graduate Aptitude Test in Engineering 2021 Organising Institute - IIT Bombay
Q. 19 - Q. 25 Numerical Answer Type (NAT), carry ONE mark each (no negative marks).
Q. 19 A reversible heat engine absorbs 20 kJ of heat from a source at 500 K and dissipates it to the reservoir at 400 K . The efficiency of the heat engine is
\qquad $\%$.
Q. 20 Among the following eight compounds,

the number of compound(s) which can exhibit stereoisomerism is \qquad .
Q. 21 The Mo-Mo bond order in $\left[\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Mo}(\mathrm{CO})_{2}\right]_{2}$ which obeys the 18electron rule is \qquad .
Q. 22

The change in enthalpy $(\Delta \mathrm{H})$ for the reaction
$2 \mathbf{P}(\mathrm{~s})+\mathbf{3} \mathrm{Br}_{2}(\mathrm{I}) \rightarrow \mathbf{2} \mathrm{PBr}_{3}(\mathbf{l})$
is $\mathbf{- 2 4 3} \mathbf{~ k J}$. In this reaction, if the amount of phosphorus consumed is $\mathbf{3 . 1} \mathbf{g}$, the change in enthalpy (rounded off to two decimal places) is \qquad kJ.
[Atomic Wt. of $\mathbf{P}=31$]

Graduate Aptitude Test in Engineering 2021 Organising Institute - IIT Bombay

Chemistry (CY)
Q. 23

The number of signal(s) in the ${ }^{1} \mathrm{H}$ NMR spectrum of the following compound

recorded at $25{ }^{\circ} \mathbf{C}$ in CDCl_{3} is \qquad .
Q. 24 A 5 V battery delivers a steady current of 1.5 A for a period of 2 h . The total charge that has passed through the circuit is \qquad Coulombs.
Q. 25 The spin-only magnetic moment of $\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$ (rounded off to one decimal place) is \qquad BM.

Graduate Aptitude Test in Engineering 2021 Organising Institute - IIT Bombay
Q. 26 - Q. 42 Multiple Choice Question (MCQ), carry TWO mark each (for each wrong answer: - 2/3).

Q.26	The geometry and the number of unpaired electrons in tetrakis(1- norbornyl)Co respectively, are:
(A)	tetrahedral and one
(B)	tetrahedral and five
(C)	square planar and one
(D)	square planar and three

Q.27	The yellow color of an aqueous solution of $\mathrm{K}_{2} \mathrm{CrO}_{4}$ changes to red-orange upon the addition of a few drops of HCl. The red-orange complex, the oxidation state of its central element(s), and the origin of its color, respectively, are:
(A)	chromium chloride, $+3, \mathrm{~d}-\mathrm{d}$ transition
(B)	dichromate ion, +6 and +6, charge transfer
(C)	perchlorate ion, +7, charge transfer
(D)	chromic acid, +6, charge transfer

Q.28	The shapes of the compounds CIF3, $\mathrm{XeOF}_{2}, \mathrm{~N}_{3}{ }^{-}$and $\mathrm{XeO}_{3} \mathbf{F}_{2}$ respectively, are:
(A)	T-shape, T-shape, linear and trigonal bipyramidal
(B)	trigonal planar, T-shape, V-shape and square pyramidal
(C)	T-shape, trigonal planar, linear and square pyramidal
(D)	trigonal planar, trigonal planar, V-shape and trigonal bipyramidal

Graduate Aptitude Test in Engineering 2021 Organising Institute - IIT Bombay

Q.29	The metal borides that contain isolated boron atoms are:
(A)	$\mathrm{Tc}_{7} \mathrm{~B}_{3}$ and $\mathrm{Re}_{7} \mathrm{~B}_{3}$
(B)	$\mathrm{Cr}_{5} \mathrm{~B}_{3}$ and $\mathrm{V}_{3} \mathrm{~B}_{2}$
(C)	$\mathrm{Ti}_{4} \mathrm{~B}_{4}$ and $\mathrm{V}_{3} \mathrm{~B}_{4}$
(D)	TiB and HfB

Q.30	The major product formed in the following reaction (A) is: non-6-yn-2-one (B) non-3-yn-8-one (C) non-2-yn-6-one (D) non-3-en-8-one

Graduate Aptitude Test in Engineering 2021 Organising Institute - IIT Bombay

Chemistry (CY)
Q. 31 The major product formed in the following reaction

Graduate Aptitude Test in Engineering 2021
Graduate Aptitude Test in
Organising Institute - IIT Bombay

Chemistry (CY)
(B)

Graduate Aptitude Test in Engineering 2021 Organising Institute - IIT Bombay

Chemistry (CY)
(i) 33

Graduate Aptitude Test in Engineering 2021 Organising Institute - IIT Bombay

Chemistry (CY)

Q. 34	In an electrochemical cell, Ag^{+}ions in AgNO_{3} are reduced to Ag metal at the cathode and Cu is oxidized to Cu^{2+} at the anode. A current of 0.7 A is passed through the cell for 10 min . The mass (in grams) of silver deposited and copper dissolved, respectively, are: [Faraday Constant $=96,485 \mathrm{C} \mathrm{mol}^{-1}$, Atomic Weight of $\mathrm{Ag}=107.9$, Atomic Weight of $\mathbf{C u}=63.55]$
(A)	0.469 and 0.138
(B)	0.235 and 0.138
(C)	0.469 and 0.069
(D)	0.235 and 0.069

Q.35

Graduate Aptitude Test in Engineering 2021 Organising Institute - IIT Bombay
Q. 36 In the following reaction

Graduate Aptitude Test in Engineering 2021

Chemistry (CY)
Q. 37 The major products P and Q formed in the following reactions

Q.38	The major product formed in the reaction of $(\mathbf{2 R}, \mathbf{3 R})$-2-bromo-3-methylpentane with NaOMe is:
(A)	$($ (Z)-3-methylpent-2-ene
(B)	$($ (E)-3-methylpent-2-ene
(C)	$(2 R, 3 R)$-2-methoxy-3-methylpentane
(D)	$(2 S, 3 R)$-2-methoxy-3-methylpentane

Graduate Aptitude Test in Engineering 2021 Organising Institute - IIT Bombay
Q. 39 The major product formed in the following reaction

Q.40	Hexane and heptane are completely miscible. At $25{ }^{\circ} \mathbf{C}$, the vapor pressures of hexane and heptane are 0.198 atm and 0.06 atm, respectively. The mole fractions of hexane and heptane in the vapor phase for a solution containing 4 M hexane and $\mathbf{6} \mathbf{~ M}$ heptane, respectively, are:
(A)	0.688 and 0.312
(B)	0.400 and 0.600
(C)	0.312 and 0.688
(D)	0.600 and 0.400

Graduate Aptitude Test in Engineering 2021 Organising Institute - IIT Bombay

Q.41	The correct order of Lewis acid strengths of $\mathbf{B F}_{2} \mathbf{C l}, \mathbf{B F C l B r}, \mathbf{B F}_{2} \mathbf{B r}$ and $\mathbf{B F B r}_{2}$ is:
(A)	$\mathrm{BF}_{2} \mathrm{Cl}>\mathrm{BFClBr}>\mathrm{BF}_{2} \mathrm{Br}>\mathrm{BFBr}_{2}$
(B)	$\mathrm{BFBr}_{2}>\mathrm{BFClBr}>\mathrm{BF}_{2} \mathrm{Br}>\mathrm{BF}_{2} \mathrm{Cl}$
(C)	$\mathrm{BF}_{2} \mathrm{Cl}>\mathrm{BF}_{2} \mathrm{Br}>\mathrm{BFClBr}^{2}>\mathrm{BFBr}_{2}$
(D)	$\mathrm{BFClBr}^{2}>\mathrm{BFBr}_{2}>\mathrm{BF}_{2} \mathrm{Cl}>\mathrm{BF}_{2} \mathrm{Br}$

Q. 42	The correct order of increasing intensity (molar absorptivity) of the UV-visible absorption bands for the ions $\left[\mathrm{Ti}\left(\mathrm{H}_{2} \mathrm{O}\right) 6\right]^{3+},\left[\mathrm{Mn}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+},\left[\mathrm{CrO}_{4}\right]^{2-}$, and $\left[\mathrm{NiCl}_{4}\right]^{2-}$ is:
(A)	$\left[\mathrm{Ti}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}<\left[\mathrm{Mn}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}<\left[\mathrm{CrO}_{4}\right]^{2-}<\left[\mathrm{NiCl}_{4}\right]^{2-}$
(B)	$\left[\mathrm{Mn}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}<\left[\mathrm{Ti}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}<\left[\mathrm{NiCl}_{4}\right]^{2-}<\left[\mathrm{CrO}_{4}\right]^{2-}$
(C)	$\left[\mathrm{NiCl}_{4}\right]^{2-}<\left[\mathrm{Ti}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}<\left[\mathrm{Mn}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}<\left[\mathrm{CrO}_{4}\right]^{2-}$
(D)	$\left[\mathrm{Ti}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}<\left[\mathrm{NiCl}_{4}\right]^{2-}<\left[\mathrm{CrO}_{4}\right]^{2-}<\left[\mathrm{Mn}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$

Q. 43 - Q. 44 Multiple Select Question (MSQ), carry TWO mark each (no negative marks).

Q.43	The correct statement(s) about the concentration of $\mathbf{N a}^{+}$and \mathbf{K}^{+}ions in animal cells is/are:
(A)	$\left[\mathrm{K}^{+}\right]$inside the cell $>\left[\mathrm{K}^{+}\right]$outside the cell
(B)	$\left[\mathrm{Na}^{+}\right]$inside the cell $>\left[\mathrm{Na}^{+}\right]$outside the cell
(C)	$\left[\mathrm{Na}^{+}\right]$inside the cell $<\left[\mathrm{Na}^{+}\right]$outside the cell
(D)	$\left[\mathrm{K}^{+}\right]$inside the cell $<\left[\mathrm{K}^{+}\right]$outside the cell

Q.44	The correct statement(s) about actinides is/are:
(A)	The 5f electrons of actinides are bound less tightly than the 4f electrons.
(B)	The trans uranium elements are prepared artificially.
(C)	All the actinides are radioactive.
(D)	Actinides do not exhibit actinide contraction.

Graduate Aptitude Test in Engineering 2021
Q. 45 - Q. 55 Numerical Answer Type (NAT), carry TWO mark each (no negative marks).
Q. 45 The number of photons emitted per nanosecond by a deuterium lamp ($\mathbf{4 0 0} \mathbf{~ n m}$) having a power of 1 microwatt (rounded off to the nearest integer) is \qquad .
$\left[h=6.626 \times 10^{-34} \mathrm{~kg} \mathrm{~m}^{2} \mathrm{~s}^{-1} ; c=3.0 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}\right.$]
Q. 46 Given the initial weight of 1 mg of radioactive ${ }_{27}^{60} \mathrm{Co}$ (half-life $=5.27$ years), the amount disintegrated in 1 year (rounded off to two decimal places) is
\qquad mg.
Q. 47 The de Broglie wavelength of an argon atom (mass $=40 \mathrm{amu}$) traveling at a speed of $250 \mathrm{~m} \mathrm{~s}^{-1}$ (rounded off to one decimal place) is \qquad picometers. $\left[N=6.022 \times 10^{23} ; h=6.626 \times 10^{-34} \mathrm{~kg} \mathrm{~m}^{2} \mathrm{~s}^{-1}\right]$
Q. 48 The molar absorption coefficient of a substance dissolved in cyclohexane is $1710 \mathrm{~L} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1}$ at 500 nm . The reduction in intensity of light of the same wavelength that passes through a cell of 1 mm path length containing a 2 mmol L^{-1} solution (rounded off to one decimal place) is \qquad $\%$.
Q. 49 The fundamental vibrational frequency of ${ }^{1} \mathbf{H}^{127} I$ is $2309 \mathbf{c m}^{-1}$. The force constant for this molecule (rounded off to the nearest integer) is \qquad $\mathbf{N} \mathbf{m}^{-1}$.
$\left[N=6.022 \times 10^{23}, c=3.0 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}\right]$
Q. 50 A laser Raman spectrometer operating at 532 nm is used to record the vibrational spectrum of Cl_{2} having its fundamental vibration at $560 \mathrm{~cm}^{-1}$. The Stokes line corresponding to this vibration will be observed at \qquad cm^{-1}. (Rounded off to the nearest integer)

Graduate Aptitude Test in Engineering 2021
Q. 51 The vapor pressure of toluene (Mol. Wt. = 92) is 0.13 atm at $25^{\circ} \mathrm{C}$. If 6 g of a hydrocarbon is dissolved in 92 g of toluene, the vapor pressure drops to 0.12 atm. The molar mass of the hydrocarbon (rounded off to the nearest integer) is
\qquad —.

Q. 52 The reaction

$\mathrm{CO}(\mathrm{g})+\mathrm{Cl}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{COCl}_{2}(\mathrm{~g})$
at $500{ }^{\circ} \mathrm{C}$, with initial pressures of 0.7 bar of CO and 1.0 bar of Cl_{2}, is allowed to reach equilibrium. The partial pressure of $\mathrm{COCl}_{2}(\mathrm{~g})$ at equilibrium is 0.15 bar. The equilibrium constant for this reaction at $500{ }^{\circ} \mathrm{C}$ (rounded off to two decimal places) is \qquad .
Q. 53 The rate constants for the decomposition of a molecule in the presence of oxygen are $0.237 \times 10^{-4} \mathrm{~L} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$ at $0{ }^{\circ} \mathrm{C}$ and $2.64 \times 10^{-4} \mathrm{~L} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$ at $25{ }^{\circ} \mathrm{C}$ ($R=8.314 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$).
The activation energy for this reaction (rounded off to one decimal place) is
\qquad $k \mathrm{k} \mathrm{mol}^{-1}$.
Q. 542 L of a gas at 1 atm pressure is reversibly heated to reach a final volume of 3.5 L. The absolute value of the work done on the gas (rounded off to the nearest integer) is \qquad Joules.
Q. 55 The quantity of the cobalt ore $\left[\mathrm{Co}_{3}\left(\mathrm{AsO}_{4}\right)_{2} \cdot \mathrm{H}_{2} \mathrm{O}\right]$ required to obtain 1 kg of cobalt (rounded off to two decimal places) is \qquad kg.
[Atomic Wt. of $\mathbf{C o}=\mathbf{5 9}, \mathrm{As}=\mathbf{7 5}, \mathrm{O}=16, \mathrm{H}=1$]

END OF THE QUESTION PAPER

