GATE 2022 General Aptitude (GA)

Q. 1 - Q. 5 Carry ONE mark each.

Q. 1	The___ is too high for it to be considered___
(A)	fair / fare
(B)	faer / fair
(C)	fare / fare
(D)	fare / fair

, \qquad

Q. 2	A function $y(x)$ is defined in the interval $[0,1]$ on the x-axis as $y(x)=\left\{\begin{array}{lll} 2 & \text { if } & 0 \leq x<\frac{1}{3} \\ 3 & \text { if } & \frac{1}{3} \leq x<\frac{3}{4} \\ 1 & \text { if } & \frac{3}{4} \leq x \leq 1 \end{array}\right.$ Which one of the following is the area under the curve for the interval $[0,1]$ on the x-axis?
(A)	$\frac{5}{6}$
(B)	$\frac{6}{5}$
(C)	$\frac{13}{6}$
(D)	$\frac{6}{13}$

Q. 3	Let r be a root of the equation $x^{2}+2 x+6=0$.
Then the value of the expression $(r+2)(r+3)(r+4)(r+5)$ is	
(A)	51
(B)	-51
(C)	126
(D)	-126

 Organised by
Indian Institute of Technology Kharagpur

Q.4	Given below are four statements. Statement 1: All students are inquisitive. Statement 2: Some students are inquisitive. Statement 3: No student is inquisitive. Statement 4: Some students are not inquisitive. From the given four statements, find the two statements that CANNOT BE TRUE simultaneously, assuming that there is at least one student in the class.
(A)	Statement 1 and Statement 3
(B)	Statement 1 and Statement 2
(C)	Statement 2 and Statement 4
(D)	Statement 3 and Statement 4

Q. 6 - Q. 10 Carry TWO marks each.

Q.6	Some people believe that "what gets measured, improves". Some others believe that "what gets measured, gets gamed". One possible reason for the difference in the beliefs is the work culture in organizations. In organizations with good work culture, metrics help improve outcomes. However, the same metrics are counterproductive in organizations with poor work culture. Which one of the following is the CORRECT logical inference based on the information in the above passage?		
(A)	Metrics are useful in organizations with poor work culture		
(B)	Metrics are useful in organizations with good work culture		
(C)	Metrics are always counterproductive in organizations with good work culture		
(D)	Metrics are never useful in organizations with good work culture	Graduate Aptitude Test in Engineering	Organised by
:---	:---		
Indian histivte of Technology Kharagour			

Q.7	In a recently conducted national entrance test, boys constituted 65\% of those who appeared for the test. Girls constituted the remaining candidates and they accounted for 60% of the qualified candidates. Which one of the following is the correct logical inference based on the information provided in the above passage?
(A)	Equal number of boys and girls qualified
(B)	Equal number of boys and girls appeared for the test
(C)	The number of boys who appeared for the test is less than the number of girls who appeared
(D)	The number of boys who qualified the test is less than the number of girls who qualified

Q.8	A box contains five balls of same size and shape. Three of them are green coloured balls and two of them are orange coloured balls. Balls are drawn from the box one at a time. If a green ball is drawn, it is not replaced. If an orange ball is drawn, it is replaced with another orange ball. First ball is drawn. What is the probability of getting an orange ball in the next draw?
(A)	$\frac{1}{2}$
(B)	$\frac{8}{25}$
(C)	$\frac{19}{50}$
(D)	$\frac{23}{50}$

Q. 9	The corners and mid-points of the sides of a triangle are named using the distinct letters P, Q, R, S, T and U, but not necessarily in the same order. Consider the following statements: - The line joining P and R is parallel to the line joining Q and S . - P is placed on the side opposite to the corner T. - S and U cannot be placed on the same side. Which one of the following statements is correct based on the above information?
(A)	P cannot be placed at a corner
(B)	S cannot be placed at a corner
(C)	U cannot be placed at a mid-point
(D)	R cannot be placed at a corner

-man

Q. 10	A plot of land must be divided between four families. They want their individual plots to be similar in shape, not necessarily equal in area. The land has equally spaced poles, marked as dots in the below figure. Two ropes, R1 and R2, are already present and cannot be moved. What is the least number of additional straight ropes needed to create the desired plots? A single rope can pass through three poles that are aligned in a straight line.
(A)	2

GATE 2022 Biomedical Engineering (BM)

Q. 11 - Q. 35 Carry ONE mark Each

\(\left.$$
\begin{array}{|l|l|}\hline \text { Q. } 11 & \begin{array}{l}\text { If the given matrices } A=\left[\begin{array}{ll}3 & -2 \\
4 & -2\end{array}\right] \\
\text { value of coefficient } k \text { is }\end{array}
$$

\hline (A) \& 1

\hline (B) \& 2

\hline (C) \& 0

\hline (D) \& 4

\hline \& 1\end{array}\right]\) satisfy $A^{2}=k A-2 I$, the 1 | 1 | 0 |
| :--- | :--- |
| 0 | |

GATE 2022 Biomedical Engineering (BM)

Q.12	Evaluation of the integral $\int \frac{d x}{\sqrt{2 x-x^{2}}}$ results in
(A)	$\sin ^{-1}(x-1)+c$
(B)	$\cos ^{-1}(x-1)+c$
(C)	$\sin ^{-1}\left(\frac{x}{2}\right)+c$
(D)	$\cos ^{-1}\left(\frac{x}{2}\right)+c$
Q.13	If $\vec{V}=a \hat{i}+b \hat{j}+c \hat{k}$, identify the INVALID operation on \vec{V}.
(A)	$\nabla \bullet \nabla \times(\vec{V})$
(B)	$\nabla \times \nabla \bullet(\vec{V})$
(D)	$\nabla(\nabla \bullet(\vec{V}))$

GATE 2022 Biomedical Engineering (BM)

Q. 14	$x(t)$ is a real continuous-time signal whose magnitude frequency response $(\|X(j \omega)\|)$ is shown below. After sampling $x(t)$ at 100 rad. s^{-1}, the spectral point P is down-converted to \qquad rad. s^{-1} in the spectrum of the sampled signal.
(A)	12.5
(B)	25
(C)	6.25
(D)	37.5

Graduate Aptitude Test in Engineering
Organised by
Indian Institute of Technology Kharagpur
GATE 2022 Biomedical Engineering (BM)

GATE

Graduate Aptitude Test in Engineering	Organised by
Indian Instiute of Technology Kharagpur	

GATE 2022 Biomedical Engineering (BM)

Q. 16	In the circuit diagram shown below, the logic gates operate with a supply voltage of 1 V . NAND and XNOR have 200 ps and 400 ps input-to-output delay, respectively. At time $t=T, A(t)=0, B(t)=1$ and $Z(t)=0$. When the inputs are changed to $A(t)=1, B(t)=0$ at $t=2 T$, a 1 V pulse is observed at Z. The pulse width of the 1 V pulse is
(A)	100
(B)	200
(C)	400
(D)	600

GATE 2022 Biomedical Engineering (BM)

Q. 17	Input bits X and Y are added by using the combinational logic as shown below. S represents the sum of the two bits. For a correct implementation of the sum, the signals $D_{0}, D_{1}, D_{2}, D_{3}$ are respectively.
(A)	$1,0,0,1$
(B)	$0,1,0,1$
(C)	$1,0,1,1$
(D)	$0,1,1,0$

GATE 2022 Biomedical Engineering (BM)

Q. 18	The time delay between the peaks of the voltage signals $v_{1}(t)=2 \cos \left(6 t+60^{\circ}\right)$ and $v_{2}(t)=-3 \sin (6 t)$ is
(A)	$300 \pi / 360$
(B)	$10 \pi / 360$
(C)	$50 \pi / 360$
(D)	$200 \pi / 360$

GATE 2022 Biomedical Engineering (BM)

| Q. 19 |
| :--- | :--- |
| For the balanced Owen-bridge circuit shown in the figure, the values of L_{x} and R_{x} |
| are: |

GATE 2022 Biomedical Engineering (BM)

Q.20	Myopia occurs when the focal point falls corrected using a lens.			
(A)	in front of, convex retina. This can be			
(B)	behind, convex	\quad	(C)	in front of, concave
:---	:---			
(D)	behind, concave			

GATE 2022 Biomedical Engineering (BM)

Q.22	In a healthy adult, which one of the following regions of the brain contains primarily white matter?
(A)	Cerebral cortex
(B)	Basal ganglia
(C)	Limbic system
(D)	Corpus callosum
Q.23	Skeletal muscles are recruited to lift loads. If the force generated in the muscle due to contraction is not sufficient to lift the load, it is known as
(A)	
(D)	Isometric
(B)	Isotonic
Isoinertial	

GATE 2022 Biomedical Engineering (BM)

Q.24	Backscattered electron detector of a scanning electron microscope is used to				
(A)	study surface topography of the sample				
(B)	quantify surface roughness				
(C)	measure atomic number				
(D)	contrast areas with different chemical compositions	$	$	Q.25	In the process of obtaining a Magnetic Resonance Image (MRI), the terms T1 and T2 time constants of the material are very crucial to decide on getting suitable weighted images. Choose the correct explanation relating to these two constants from the following options.
:---	:---				
(B)	T1 and T2 indicate the durations that Free Induction Decay (FID) signal to be recorded in x and y axes directions, respectively transverse relaxation time				
(C)	T1 and T2 refer to the durations of flipping pulses used to tilt the resultant magnetic vector into x-y plane and inverse z-direction, respectively				
(D)	T1 is the spin-spin or transverse relaxation time, and T2 is the spin-lattice or longitudinal relaxation time				
	(A) relaxation time, and T2 is the spin-spin or				
	Ther				

GATE

GATE 2022 Biomedical Engineering (BM)

Q.26	Given x is real, identify all the even-functions among the following:
(A)	$x\|x\|$
(B)	$\frac{\cos (x)}{x}$
(C)	$\sin x^{2}$
(D)	$e^{-\|x\|}$
Q.27	An ideal coronary stent should
(D)	
(D)	support deposition of extracellular matrix
(B)	promote accumulation of smooth muscle cells
(C)	
(Datigue resistant	

GATE 2022 Biomedical Engineering (BM)

Q.28	Which of the following statements related to the safety of biomedical instruments are TRUE?
(A)	When a person is exposed to an electrical hazard, let-go current is defined as the maximum current at which the subject can withdraw voluntarily
(B)	Microshock is a physiological response resulting from an electrical current passing through heart
(C)	The patient in an intensive care unit is being exposed to the danger of microshock because of using internal conductive electrodes in the vicinity of the heart
(D)	The 50 Hz safe current limit for a microshock is greater than 50 mA
Q.29	Which of the following statements related to the operating principle of pulse oximetry are CORRECT?
(D)	Pulse oximeter can accurately determine the SpO of of blood by computing the ratio of absorbances at 850 nm and 950 nm wavelengths
(B)	In a pulse oximeter, isosbestic wavelength is the wavelength at which Hb and HbO have same optical absorbance
(C)	Pulse oximeter can accurately determine the SpO of absorbances at 660 nm and 905 nm wavelengths
(A)	Pulse oximeter by computing the ratio analyzing the light transmitted through the skin during the systolic phase of the blood flow through the tissue

GATE 2022 Biomedical Engineering (BM)

Q.30	Which of the following statements related to biomedical measurements are TRUE?
(A)	Electrical activity of neurons in the peripheral nervous system can be measured by ENG
(B)	Electrical activity of the retina in response to light stimulus can be measured using EOG
(C)	In a human EEG, Gamma waves are high frequency waves compared to Beta, Delta, and Theta waves
(D)	P wave in ECG manifests ventricular repolarization
Q.31	Which of the following mechanical prosthetic valves were invented as a replacement for diseased heart valves?
(C)	Bi-leaflet valve
(D)	Swing check valve
(A)	Globe valve
	\begin{tabular}{ll\|}
\hline
\end{tabular} |

GATE

GATE 2022 Biomedical Engineering (BM)

Q. 32	Due to the current COVID pandemic conditions, assume that positive or negative status of any individual are equally likely. There are 3 members in a family. If one of the members has tested COVID positive, the conditional probability that at least 2 members are COVID positive is \qquad (rounded off to three decimal places).
Q. 33	A series RLC circuit with $\mathrm{R}=10 \Omega, \mathrm{~L}=50 \mathrm{mH}$ and $\mathrm{C}=100 \mu \mathrm{~F}$ connected to $200 \mathrm{~V}, 50 \mathrm{~Hz}$ supply consumes power P . The value of L is changed such that this circuit consumes same power P but operates with lagging power factor. The new value of L is \qquad mH (rounded off to two decimal places).
Q. 34	The thickness of piezoelectric crystal (PZT5A) used in ultrasound applications will determine the resonant frequency of the transducer. To work at a resonance frequency of 5 MHz , the thickness of a PZT5A transducer must be \qquad mm (rounded off to three decimal places). Given: The velocity of sound in PZT5A is $4350 \mathrm{~m} \cdot \mathrm{~s}^{-1}$.

GATE 2022 Biomedical Engineering (BM)
Q. 35 l lawer consumed by the 3Ω resistor is 12 W in the given circuit. The value of the

GATE 2022 Biomedical Engineering (BM)

Q. 36 - Q. 65 Carry TWO marks Each

Q.36	In the complex z-domain, the value of the integral $\oint_{C} \frac{z^{3}-9}{3 z-i} d z$ is
(A)	$\frac{2 \pi}{81}-6 i \pi$
(B)	$\frac{2 \pi}{81}+6 i \pi$
(C)	$-\frac{2 \pi}{81}+6 i \pi$
(D)	$-\frac{2 \pi}{81}-6 i \pi$

GATE 2022 Biomedical Engineering (BM)

Q.37	Solution of the differential equation $\frac{d y}{d x}-y=\cos x$ is
(A)	$y=\frac{\sin x-\cos x}{2}+c e^{x}$
(B)	$y=\frac{\sin x+\cos x}{2}+c e^{x}$
(C)	$y=\frac{\sin x-\cos x}{2}+c e^{-x}$
(D)	$y=\frac{\sin x+\cos x}{2}+c e^{-x}$

GATE
GATE 2022 Biomedical Engineering (BM)

Q. 38	An input $x(t)$ is applied to a system with a frequency transfer function given by $\mathrm{H}(\mathrm{j} \omega)$ as shown below. The magnitude and phase response of the transfer function are shown below. If $y\left(t_{d}\right)=0$ for $x(t)=u(t)$, the time $t_{d}(>0)$ is \qquad $\mu \mathrm{s}$.
(A)	$100 \ln (2)$
(B)	$10 \ln (2)$
(C)	$1000 \ln (2)$
(D)	$\ln (2)$

GATE 2022 Biomedical Engineering (BM)

Q.39	The block diagram of a two-tap high-pass FIR filter is shown below. The filter transfer function is given by $H(z)=Y(z) / X(z)$. If ratio of the maximum to minimum value of $H(z)$ is 2 and $\|H(z)\|_{\text {max }}=1$, the coefficients β_{0} and β_{1} are_respectively.
and_l	$0.75,-0.25$
(A)	$0.67,0.33$
(C)	$0.60,-0.40$
(D)	$-0.64,0.36$

GATE 2022 Biomedical Engineering (BM)

Q. 40	The block diagrams of an ideal system and a real system with their impulse responses are shown below. An auxiliary path is added to the delayed impulse response in the real system. For a unit impulse input $(x(t)=\delta(t))$ to both systems, gain β is chosen such that $y(4 T)$ is same for both systems. The value of β is Ideal System
(A)	$e^{-3 \alpha T}\left(1-e^{-2 \alpha T}\right)$
(B)	$-e^{-\alpha T}\left(1-e^{-3 \alpha T}\right)$

GATE

GATE 2022 Biomedical Engineering (BM)

Q.41 | A filter is designed using opamps, resistors, and capacitors as shown below. |
| :--- |
| Opamps are ideal with infinite gain and infinite bandwidth. If $V_{o}(s) / V_{i}(s)$ is an |
| all-pass transfer function, the value of resistor $\mathbf{R 2}$ is |

GATE 2022 Biomedical Engineering (BM)

Q.42	If $g(t)=\frac{d f(t)}{d t}$, and $F(s)=\frac{1+s}{s^{2}+12 s+32}$ where $F(s)$ is the Laplace transform of the function $f(t)$, then the value of $g(t)$ at $t=0$ is
(A)	-11
(B)	-5
(C)	-17
(D)	∞

GATE 2022 Biomedical Engineering (BM)

Q. 43	Consider the Einthoven's triangle of frontal ECG for the 3 electrodes RA, LA and LL shown in the figure. The augmented lead vectors bisect the bipolar lead vectors. At the peak of R wave, the cardiac vector M points vertically downwards with $\|M\|=5 \mathrm{mV}$. The voltages on leads I and II are __
(C)	$0,2.17$
(A)	$0,4.33$

GATE 2022 Biomedical Engineering (BM)

Q.44	Which one of the following statements is TRUE?
(A)	A myelinated axon has a greater ATP requirement than an unmyelinated axon of the same diameter and length
(B)	An unmyelinated axon has a greater ATP requirement than a myelinated axon of the same diameter and length
(C)	An unmyelinated axon has the same ATP requirement as a myelinated axon of the same diameter and length
(D)	An unmyelinated axon always has a greater ATP requirement than a myelinated axon irrespective of their diameter and length

GATE 2022 Biomedical Engineering (BM)

Q.45	The deltoid muscle connects the humerus to the shoulder blade and facilitates out stretching of the arm as shown in the figure. The humerus is connected to the shoulder blade with a ball and socket joint. Assume the equivalent weight (W) of the arm to be 30 N and acts vertically down at a horizontal distance of 30 cm. Assume that the deltoid muscle is connected to the humerus at a distance of 15 cm and makes an average angle of 20° with the horizontal. The magnitude of tension in the deltoid muscle is
(A)	31.9
(B)	63.8
(C)	87.7

GATE 2022 Biomedical Engineering (BM)

Q.46	For blood flow through arteries, which one of the following relations approximates the pulse wave propagation speed (C) as a function of the inner diameter (D) of the artery, wall thickness (t), modulus of elasticity (E), and fluid density $(\rho) ?$
(A)	$C=\sqrt{\frac{E t}{\rho D}}$
(B)	$C=\sqrt{\frac{\rho D}{E t}}$
(C)	$C=\sqrt{\frac{\rho D^{3} t^{3}}{E}}$
(D)	$C=\sqrt{\frac{E \rho}{D t}}$

GATE 2022 Biomedical Engineering (BM)

Q.47	A person has a total blood volume of 5 L. Out of this total, assume that 4 L is contained in the systemic circulation and 1 L in pulmonary circulation. The cardiac output of the person is 5 L. min^{-1}. Time taken for a drop of blood to go from right ventricle to left ventricle is __ s.
(A)	60
(B)	20
(C)	15
(D)	12

GATE 2022 Biomedical Engineering (BM)

Q.48	Based on the stress-strain curves of three different materials (X, Y, and Z) shown in the figure, which one of the following choices is CORRECT?
Stress	
(A)	X - Titanium, Y - Hydroxyapatite, Z - Polyethylene
(B)	X - Hydroxyapatite, Y - Titanium, Z - Polyethylene
(C) Hydroxyapatite, Y - Polyethylene, Z - Titanium	

GATE 2022 Biomedical Engineering (BM)

GATE 2022 Biomedical Engineering (BM)

Q. 51	Using divergence theorem, evaluate the integral $\iint_{S} \vec{F} \cdot \vec{n} d A$, where S is the surface of the cone $x^{2}+y^{2} \leq z^{2}, 0 \leq z \leq 3$. If $\vec{F}=4 x \hat{i}+3 z \hat{j}+5 y \hat{k}$ is vector function with outer unit normal vector \vec{n}, the value of the integral is \qquad (rounded off to the nearest integer).
Q. 52	The magnitude of the current gain $\frac{\mathrm{I}_{\text {load }}}{\mathrm{I}_{\text {in }}}$ in the circuit below is \qquad (rounded off to two decimal places).
Q. 53	The linear temperature coefficient of the material of a wire is $x \times 10^{-4}{ }^{\circ} \mathrm{C}^{-1}$. The resistance of this wire increased from 50Ω at $25^{\circ} \mathrm{C}$ to 60Ω at $75^{\circ} \mathrm{C}$. The value of x is \qquad (rounded off to two decimal places).

GATE
GATE 2022 Biomedical Engineering (BM)

Q. 54	A series RLC circuit is connected to $220 \mathrm{~V}, 50 \mathrm{~Hz}$ supply. For a fixed value of R and C , the inductor L is varied to deliver the maximum current. This value is 0.4 A and the corresponding potential drop across the capacitor is 330 V . The value of the inductor L is \qquad H (rounded off to two decimal places).
Q. 55	In the circuit diagram shown below, the MOSFET is biased in saturation region. The MOSFET has a threshold voltage $V_{t h}=0.5 \mathrm{~V}$, width $W=100 \mu \mathrm{~m}$, length $L=0.1 \mu \mathrm{~m}$, and $\mu_{n} C_{o x}=100 \mu \mathrm{~A} . \mathrm{V}^{-2}$. Assuming $v_{i}=1 \mathrm{mV}$ as a small-signal input to MOSFET, the magnitude of the output voltage V_{o} is \qquad mV (accurate to two decimal places). Ignore channellength modulation for the MOSFET.

GATE

 Graduate Aptitude Test in Engineering $\left\lvert\, \begin{aligned} & \text { Organised by } \\ & \text { Indian Institute of Technology Kharagpur }\end{aligned}\right.$GATE 2022 Biomedical Engineering (BM)

Q.56	In the circuit diagram shown below, BJTs are biased with $V_{E B}=0.7 \mathrm{~V}$. Neglect the base current for operating point calculations. Assume infinite input and output impedance for the BJTs. The output voltage V_{o} with small input voltage $v_{i}=10 \mathrm{mV}$ is (rounded off to one decimal place). The thermal voltage $V_{T}=25 \mathrm{mV}$ at room temperature.

GATE 2022 Biomedical Engineering (BM)

Q.57	An ideal opamp with an infinite gain and infinite bandwidth is connected in feedback as shown below. The output voltage V_{o} for the given input voltages in the circuit is
Q.58	Independent voltage measurements $(\mu \pm \sigma$) of three sensors where μ and σ are the mean and standard deviation of the measurements, respectively are as follows: $v_{1}=4.52 \pm 0.02 \mathrm{~V}, v_{2}=4.21 \pm 0.20 \mathrm{~V}, v_{3}=3.96 \pm 0.15 \mathrm{~V}$. The measurement uncertainty in $v_{1}+v_{2}+v_{3}$ is decimal places).
	The value (rounded off to two
A moving coil voltmeter has an internal resistance of 50Ω. The scale of the meter	
is divided into 100 equal divisions. When a potential of 1 V is applied to terminals	
of voltmeter, a deflection of 100 divisions is obtained. However, it is desired that needs to be connected in series to achieve this is	
when a potential of 500 V is applied to the terminals, a deflection of 100 divisions	
should be obtained.	

GATE

GATE 2022 Biomedical Engineering (BM)

Q.60	A Hall effect flow meter is used to measure the volumetric flow through a blood vessel. The flow meter induces a magnetic field across the vessel and uses a voltmeter to measure the voltage across the vessel which is normal to both magnetic field and blood flow. A caliper is used to measure the vessel diameter. The system calculated the flow rate to be $100 \mathrm{~cm}^{3} . \mathrm{s}^{-1}$ using the known magnetic field, and measured values of voltage and vessel diameter. After the measurement, a calibration is performed, and it is discovered that the voltmeter was measuring 40% larger than the actual value and the caliper was measuring the diameter 10% smaller than the actual value. Assuming a uniform flow profile along the vessel and ignoring viscosity, the actual blood flow is $\mathrm{cm}^{3} . \mathrm{s}^{-1}$ (rounded off to two decimal places).

GATE
GATE 2022 Biomedical Engineering (BM)

Q. 61	A catheter based arterial blood pressure measurement device uses a flexible diaphragm mounted with four identical strain gauges in a Wheatstone bridge configuration as shown in the figure. Assume that the strain gauges have a nominal resistance value of $\mathrm{R}_{\mathrm{G}}=10 \mathrm{k} \Omega$, Gauge Factor $\mathrm{G}=40$ and Young's Modulus $\mathrm{E}=10$ MPa. Blood pressure variations results in small finite change in strain $\epsilon(\epsilon>0)$. If V_{o} is the output voltage of the Wheatstone bridge and σ is the stress in MPa, the sensitivity $\frac{V_{\boldsymbol{o}}}{\boldsymbol{\sigma}}$ is
Q. 62	

GATE 2022 Biomedical Engineering (BM)

Q. 63	Assume that the ratio of total blood volume in liters to total body weight in kg is 0.07 and the blood consists of plasma and RBCs only. The plasma volume of a $70-\mathrm{kg}$ man with 52% hematocrit is \qquad L (rounded off to two decimal places).
Q. 64	The $1^{\text {st }}$ generation (1G) CT scanner uses a point X-ray source and a detector. The source detector assembly can move linearly at a speed of $0.5 \mathrm{~m} \cdot \mathrm{~s}^{-1}$ and that it takes 0.5 s for source-detector assembly to rotate one angular increment, regardless of the angle. This scanner is expected to collect 360 projections over 180° of span. The field of view used for data collection has a diameter of 0.5 m . The scan time required is \qquad s.
Q. 65	The inverse square law has a very practical use in radiography. While taking an acceptable chest radiograph of a subject at a distance of 0.75 m from the X-ray generator, X-ray source settings were kept at $50 \mathrm{kVp}, 50 \mathrm{~mA} . \mathrm{s}$. If the subject is moved to a distance of 1 m , and the kVp is kept the same, the new value of mA.s to obtain the same exposure will be \qquad mA.s (rounded off to two decimal places).

Q. No.	Session	Question Type	Subject Name	Key/Range	Mark
1	1	MCQ	GA	D	1
2	1	MCQ	GA	C	1
3	1	MCQ	GA	D	1
4	1	MCQ	GA	A	1
5	1	MCQ	GA	B	1
6	1	MCQ	GA	B	2
7	1	MCQ	GA	D	2
8	1	MCQ	GA	D	2
9	1	MCQ	GA	B	2
10	1	MCQ	GA	D	2
11	1	MCQ	BM	A	1
12	1	MCQ	BM	A	1
13	1	MCQ	BM	B	1
14	1	MCQ	BM	D	1
15	1	MCQ	BM	B	1
16	1	MCQ	BM	B	1
17	1	MCQ	BM	A	1
18	1	MCQ	BM	C	1
19	1	MCQ	BM	B	1
20	1	MCQ	BM	C	1
21	1	MCQ	BM	B	1
22	1	MCQ	BM	D	1
23	1	MCQ	BM	A	1
24	1	MCQ	BM	D	1
25	1	MCQ	BM	A	1
26	1	MSQ	BM	C, D	1
27	1	MSQ	BM	A, C	1
28	1	MSQ	BM	A, B, C	1
29	1	MSQ	BM	A, B, C	1
30	1	MSQ	BM	A, C	1
31	1	MSQ	BM	B, C	1
32	1	NAT	BM	0.570 to 0.572	1
33	1	NAT	BM	152.01 to 152.99	1
34	1	NAT	BM	0.434 to 0.436	1
35	1	NAT	BM	6 to 6	1
36	1	MCQ	BM	A	2
37	1	MCQ	BM	A	2
38	1	MCQ	BM	A	2
39	1	MCQ	BM	A	2
40	1	MCQ	BM	C	2
41	1	MCQ	BM	B	2
42	1	MCQ	BM	A	2
43	1	MCQ	BM	A	2
44	1	MCQ	BM	B	2

45	1	MCQ	BM	D	2
46	1	MCQ	BM	A	2
47	1	MCQ	BM	D	2
48	1	MCQ	BM	B	2
49	1	MCQ	BM	B	2
50	1	NAT	BM	3.27 to 3.31	2
51	1	NAT	BM	111 to 114	2
52	1	NAT	BM	75.49 to 76.01	2
53	1	NAT	BM	44.35 to 44.55	2
54	1	NAT	BM	2.59 to 2.70	2
55	1	NAT	BM	6.25 to 6.25	2
56	1	NAT	BM	6.2 to 6.8	2
57	1	NAT	BM	4.6 to 4.6	2
58	1	NAT	BM	0.25 to 0.26	2
59	1	NAT	BM	24950 to 24950	2
60	1	NAT	BM	78.71 to 79.91	2
61	1	NAT	BM	8 to 8	2
62	1	NAT	BM	1.05 to 1.05	2
63	1	NAT	BM	2.29 to 2.41	2
64	1	NAT	BM	538 to 542	2
65	1	NAT	BM	88.86 to 88.92	2

