Graduate Aptitude Test in Engineering 2021 Organising Institute - IIT Bombay

Biomedical Engineering (BM)

## General Aptitude (GA)

Q. 1 - Q. 5 Multiple Choice Question (MCQ), carry ONE mark each (for each wrong answer: - 1/3).

| Q.1 | (i) <br> (ii) <br> (iii) $\quad$Arun and Aparna are here. <br> (iv) <br> Arun's families is here. <br> Which of the above sentences are grammatically CORRECT? <br> (A) <br> (i) and (ii) <br> (C) <br> (i) and (iv) <br> (D) <br> (ii) and (iv) |
| :--- | :--- |

Graduate Aptitude Test in Engineering 2021 Organising Institute - IIT Bombay

Biomedical Engineering (BM)

| Q. 2 |  <br> The mirror image of the above text about the $x$-axis is |
| :---: | :---: |
| (A) | PHAFVXI? |
| (B) |  |
| (C) | $\text { dH人Г } \forall \text { 人I2 }$ |
| (D) | $\text { BHAF } \mathrm{HXIS}$ |

Graduate Aptitude Test in Engineering 2021 Organising Institute - IIT Bombay

Biomedical Engineering (BM)

| Q.3 | Two identical cube shaped dice each with faces numbered $\mathbf{1}$ to 6 are rolled <br> simultaneously. The probability that an even number is rolled out on each <br> dice is: |
| :--- | :--- |
| (A) | $\frac{1}{36}$ |
| (B) | $\frac{1}{12}$ |
| (C) | $\frac{1}{8}$ |
| (D) | $\frac{1}{4}$ |


| Q.4 | $\oplus$ and $\odot$ are two operators on numbers $\boldsymbol{p}$ and $\boldsymbol{q}$ such that <br> $p \odot q=p-q$, and $p \oplus q=p \times q$ <br> Then, $(9 \odot(6 \oplus 7)) \odot(7 \oplus(6 \odot 5))=$ |
| :--- | :--- |
| (A) | 40 |
| (B) | -26 |
| (C) | -33 |
| (D) | -40 |


| Q.5 | Four persons $P, Q, R$ and $S$ are to be seated in a row. $R$ should not be seated <br> at the second position from the left end of the row. The number of distinct <br> seating arrangements possible is: |
| :---: | :--- |
| (A) | 6 |
| (B) | 9 |
| (C) | 18 |
| (D) | 24 |

Graduate Aptitude Test in Engineering 2021

Biomedical Engineering (BM)
Q. 6 - Q. 10 Multiple Choice Question (MCQ), carry TWO marks each (for each wrong answer: - 2/3).

| Q.6 | On a planar field, you travelled 3 units East from a point O. Next you <br> travelled 4 units South to arrive at point P. Then you travelled from P in the <br> North-East direction such that you arrive at a point that is 6 units East of <br> point O. Next, you travelled in the North-West direction, so that you arrive <br> at point Q that is 8 units North of point P. <br> The distance of point Q to point $O$, in the same units, should be |
| :--- | :--- |
| (A) | 3 |
| (B) | 4 |
| (C) | 5 |
| (D) | 6 |


| Q. 7 | The author said, "Musicians rehearse before their concerts. Actors rehearse <br> their roles before the opening of a new play. On the other hand, I find it <br> strange that many public speakers think they can just walk on to the stage <br> and start speaking. In my opinion, it is no less important for public speakers <br> to rehearse their talks." <br> Based on the above passage, which one of the following is TRUE? |
| :---: | :--- |
| (A) | The author is of the opinion that rehearsing is important for musicians, actors <br> and public speakers. |
| (B) | The author is of the opinion that rehearsing is less important for public speakers <br> than for musicians and actors. |
| (C) | The author is of the opinion that rehearsing is more important only for <br> musicians than public speakers. |
| (D) | The author is of the opinion that rehearsal is more important for actors than <br> musicians. |

## Graduate Aptitude Test in Engineering 2021

 Organising Institute - IIT BombayBiomedical Engineering (BM)

| Q.8 | 1. Some football players play cricket. <br> 2. All cricket players play hockey. <br> Among the options given below, the statement that logically follows from <br> the two statements 1 and 2 above, is: |
| ---: | :--- |
| (A) | No football player plays hockey. |
| (B) | Some football players play hockey. |
| (C) | All football players play hockey. |
| (D) | All hockey players play football. |


| Q. 9 |  |
| :--- | :--- |
| In the figure shown above, PQRS is a square. The shaded portion is formed |  |
| by the intersection of sectors of circles with radius equal to the side of the |  |
| square and centers at S and Q . |  |
| The probability that any point picked randomly within the square falls in the |  |
| shaded area is |  |

Graduate Aptitude Test in Engineering 2021 Organising Institute - IIT Bombay

Biomedical Engineering (BM)

| Q.10 | In an equilateral triangle PQR, side $P Q$ is divided into four equal parts, side <br> QR is divided into six equal parts and side PR is divided into eight equal parts. <br> The length of each subdivided part in $\mathbf{c m}$ is an integer. <br> The minimum area of the triangle $P Q R$ possible, in $\mathbf{c m}^{2}$, is |
| :---: | :--- |
| (A) | 18 |
| (B) | 24 |
| (C) | $48 \sqrt{3}$ |
| (D) | $144 \sqrt{3}$ |

Graduate Aptitude Test in Engineering 2021 Organising Institute - IIT Bombay

Biomedical Engineering (BM)

## Biomedical Engineering (BM)

Q. 1 - Q. 17 Multiple Choice Question (MCQ), carry ONE mark each (for each wrong answer: - 1/3).

| Q.1 | For |
| :--- | :--- |
|  | $f_{X}(x)=\frac{1}{\pi}\left(\frac{q}{e^{x}+e^{-x}}\right)$ <br> to balue of $\boldsymbol{q}$ is <br> valid probability distribution function of a random variable $X$, |
| (A) | 2 |
| (B) | $\pi$ |
| (C) | 4 |
| (D) | $-\pi$ |


| Q. 2 | Given a scalar function $V(x, y)=\frac{1}{2}\left(x^{2}+y^{2}\right)$, the directional derivative of <br> $V$ in the direction of the vector field $3 y i-3 x j$ at the point $(1,1)$ is <br> (Note: $i$ and $j$ are the unit vectors along the $x$ and $y$ directions, <br> respectively.) |
| :--- | :--- |
| (A) | $\sqrt{18}$ |
| (B) | 0 |
| (C) | $\frac{1}{\sqrt{18}}$ |
| (D) | $3 / 2$ |

## Graduate Aptitude Test in Engineering 2021 Organising Institute - IIT Bombay

Biomedical Engineering (BM)

| Q. 3 | Three resistive loads are connected to ideal voltage and current sources as <br> shown in the circuit below. The voltage $\boldsymbol{V}_{\boldsymbol{A} \boldsymbol{B}}$ across the terminals A and B <br> is equal to |
| :--- | :--- |
| (A) | +10 |
| (B) | -10 |
| (C) | -6 |
| (D) | +6 |


| Q. 4 | An ideal inductor with an inductance value of $1 / 3 \mathbf{H}$ is connected to a 50 Hz <br> sinusoidal AC voltage source. The energy stored in the inductor is $6 \mathbf{J . ~ T h e}$ <br> value of the maximum power delivered to the inductor is__ W. W. |
| :---: | :--- |
| (A) | $1200 \pi$ |
| (B) | $600 \pi$ |
| (C) | 1200 |
| (D) | 0 |


| Q. 5 | Let $X(j \omega)$ denote the Fourier transform of $x(t)$. If $X(j \omega)=$ $10 e^{-j \pi f}\left(\frac{\sin (\pi f)}{\pi f}\right)$, then $\frac{1}{2 \pi} \int_{-\infty}^{\infty} X(j \omega) d \omega=$ $\qquad$ . (where $\omega=2 \pi f$ ) |
| :---: | :---: |
| (A) | $10 \pi$ |
| (B) | 100 |
| (C) | 10 |
| (D) | $20 \pi$ |

## Graduate Aptitude Test in Engineering 2021

| Q. 6 | In the circuit shown below, Y is a 2-bit $\left(\mathrm{Y}_{1} \mathrm{Y}_{0}\right)$ output of the combinational <br> logic. What is the maximum value of Y for any given digital inputs, $\mathrm{A}_{1} \mathrm{~A}_{0}$ <br> and $\mathrm{B}_{1} \mathrm{~B}_{0}$ ? |
| :--- | :--- |
| (A) | 01 |
| (B) | 10 |
| (C) | 00 |
| (D) | 11 |


| Q. 7 | In the block diagram shown below, an analog signal, $V_{I N}=\sin \left(2 \pi 10^{6} t\right)$ is quantized by a 10-bit Nyquist ADC. Later, 4 LSBs are dropped and 6 MSBs are converted to an analog signal ( $V_{\text {oUt }}$ ) while using a 6-bit DAC. Assume uniform distribution for the quantization noise. The peak SQNR at the output of DAC is $\qquad$ dB. |
| :---: | :---: |
| (A) | 61.96 |
| (B) | 25.84 |
| (C) | 49.92 |
| (D) | 37.88 |

Graduate Aptitude Test in Engineering 2021 Organising Institute - IIT Bombay

Biomedical Engineering (BM)

| Q.8 | For a linear stable second order system, if the unit step response is such <br> that the peak time is twice the rise time, then the system is |
| ---: | :--- |
| (A) | underdamped |
| (B) | undamped |
| (C) | overdamped |
| (D) | critically damped |


| Q.9 | Which of the following displacement sensors is known to have a high <br> sensitivity and a relatively larger measurement range? |
| ---: | :--- |
| (A) | Strain gauge |
| (B) | Capacitive sensor |
| (C) | LVDT |
| (D) | Piezoelectric sensor |


| Q.10 | Which of the following temperature sensors is used in contact-type digital <br> thermometers for measuring body temperature? |
| ---: | :--- |
| (A) | Thermocouple |
| (B) | Thermistor |
| (C) | Resistance temperature detector |
| (D) | Infrared LED-photodetector pair |


| Q.11 | The $\mathbf{p H}$ of blood in a healthy human is precisely in the range of ___._. |
| :---: | :--- |
| (A) | $7.10-8.10$ |
| (B) | $6.95-7.05$ |
| (C) | $7.15-7.20$ |
| (D) | $7.35-7.45$ |

Graduate Aptitude Test in Engineering 2021 Organising Institute - IIT Bombay

Biomedical Engineering (BM)

| Q.12 | Which of the following is a cranial bone in the human body? |
| :---: | :--- |
| (A) | Occipital |
| (B) | Mandible |
| (C) | Coccyx |
| (D) | Sternum |


| Q.13 | Which of the following glands produces the thyroid stimulating hormone <br> (TSH)? |
| :---: | :--- |
| (A) | Thyroid |
| (B) | Parathyroid |
| (C) | Pituitary |
| (D) | Pineal |


| Q.14 | Which of the following causes Myocardial Infarction (MI)? |
| :---: | :--- |
| (A) | Obstruction in one of the arteries supplying blood to the heart |
| (B) | Obstruction in one of the arteries supplying blood to the brain |
| (C) | Obstruction in one of the veins draining blood from the heart |
| (D) | Obstruction in one of the veins draining blood from the brain |


| Q.15 | If we consider blood as a suspension of RBCs in a Newtonian fluid, the <br> shear forces experienced by the RBCs during blood flow would <br> (A) |
| :---: | :--- |
| Randomize the orientation of blood cells |  |
| (B) | Align RBCs along their long axes with streamlines |
| (C) | Align RBCs along their short axes with streamlines |
| (D) | Create an equal distribution of RBCs aligned in their long and short axes |

Graduate Aptitude Test in Engineering 2021 Organising Institute - IIT Bombay

Biomedical Engineering (BM)

| Q.16 | As shown in the figure, the water contact angles of surfaces A and B are $\boldsymbol{\theta}_{\mathrm{A}}$ <br> and $\theta_{\mathrm{B}}$, respectively. Based on the figure, which of the following statements <br> given below is TRUE? |
| :--- | :--- |
| (A) | Surface A is hydrophilic and surface B is hydrophobic |
| (B) | Surface A is hydrophobic and surface B is hydrophilic |
| (C) | Both surfaces are hydrophilic |
| (D) | Both surfaces are hydrophobic |


| Q.17 | Which of the following is a bone resorbing cell? |
| :---: | :--- |
| (A) | Osteoblasts |
| (B) | Osteoclasts |
| (C) | Osteocytes |
| (D) | Osteocalcin |

Graduate Aptitude Test in Engineering 2021 Organising Institute - IIT Bombay

Biomedical Engineering (BM)
Q. 18 - Q. 20 Multiple Select Question (MSQ), carry ONE mark each (no negative marks).

| Q.18 | Which of the following statements are CORRECT in the context of planar <br> X-ray imaging? |
| :---: | :--- |
| (A) | Using fast X-ray screen improves spatial resolution |
| (B) | Using fast X-ray screen worsens spatial resolution |
| (C) | Decreasing tube current decreases signal to noise ratio |
| (D) | Decreasing tube current increases signal to noise ratio |


| Q.19 | While comparing parallel fiber and pinnate muscles of a given volume, <br> which of the following statements are TRUE? |
| :---: | :--- |
| (A) | Pinnate muscles provide more muscle force |
| (B) | Parallel fiber muscles provide more muscle force |
| (C) | Pinnate muscles facilitate better muscle shortening |
| (D) | Parallel fiber muscles facilitate better muscle shortening |


| Q.20 | Which of the following may cause failure of bone implants? |
| :---: | :--- |
| (A) | Stress shielding - reduction of bone density due to removal of a typical stress <br> from bone by an implant |
| (B) | Aseptic loosening - loss of bond between bone and implant in the absence of an <br> infection |
| (C) | Fretting fatigue - progressive deterioration of material by small scale rubbing |
| (D) | Osseointegration - formation of a direct interface between an implant and a <br> bone, without intervening soft tissues |

Graduate Aptitude Test in Engineering 2021
Q. 21 - Q. 25 Numerical Answer Type (NAT), carry ONE mark each (no negative marks).
Q. 21 The minimum value, $f_{\min }$, of the function given below is $\qquad$ .
(rounded off to the nearest integer)
$f\left(x_{1}, x_{2}, x_{3}\right)=\frac{1}{2}\left(x_{1}^{2}+x_{2}^{2}+x_{3}^{2}\right)-2\left(x_{1}+x_{2}+x_{3}\right)$
Q. 22 A continuous time transfer function $H(s)=\frac{1+s / 10^{6}}{s}$ is converted to a discrete time transfer function $H(z)$ using a bilinear transform at 100 MHz sampling rate. The pole of $H(z)$ is located at $z=$ $\qquad$ .
Q. 23 Consider a type 2, unity feedback system. The intersection of the initial $-40 \mathrm{~dB} / \mathrm{dec}$ segment, of its Bode plot, with the zero dB line occurs at a frequency of $2 \mathrm{rad} / \mathrm{s}$. The acceleration error constant of the system $K_{a}$ is
$\qquad$ -
Q. 24 The radioactivity of a radionuclide with decay constant of $\mathbf{3 . 2 2 \times 1 0 ^ { - 5 } \mathbf { s } ^ { \mathbf { - 1 } } , ~}$ is 6 mCi at 10:30 AM . The radioactivity of the radionuclide at 4:30 PM on the same day will be $\qquad$ mCi . (rounded off to two decimal places)
Q. 25 A polymeric scaffold has been developed for cartilage tissue engineering. To understand the biodegradability of the material, this polymeric scaffold with a dry weight of 20 mg is kept in a lysozyme solution for 7 days. At the end of 7 days, the scaffold is freeze-dried, and the dry weight is measured to be $\mathbf{1 8} \mathbf{~ m g}$. The degradation of the polymeric scaffold after $\mathbf{7}$ days is
$\qquad$ $\%$.

Graduate Aptitude Test in Engineering 2021 Organising Institute - IIT Bombay

Biomedical Engineering (BM)
Q. 26 - Q. 42 Multiple Choice Question (MCQ), carry TWO mark each (for each wrong answer: - 2/3).

| Q.26 | The Trace and Determinant of a $2 \times \mathbf{2}$ nonsingular matrix $\boldsymbol{A}$ are $\mathbf{1 2}$ and <br> 32, respectively. The eigen values of $\boldsymbol{A}^{\mathbf{1}}$ are__and <br> (A) <br> (B) <br> (C) <br> (D) <br> (D) $1 / 16,16,1 / 32$ |
| :---: | :--- |


| Q. 27 | A unit step input is applied to a system with impulse response $\boldsymbol{H}(\boldsymbol{s})=$ <br> $\frac{\mathbf{1 - s / \omega} \omega_{z}}{1+s / \omega_{p}}$ at $\boldsymbol{t}=\mathbf{0}$. The output of the system $\boldsymbol{y}(\boldsymbol{t})$ at $\boldsymbol{t}=\mathbf{0}^{+}$is <br> (A) <br> (B) <br> (C) <br> (D)$\omega_{z} / \omega_{p}$ |
| :---: | :--- |


| Q.28 | Consider the following first order partial differential equation, also known <br> as the transport equation |
| :--- | :--- |
| $\frac{\partial y(x, t)}{\partial t}+5 \frac{\partial y(x, t)}{\partial x}=0$ <br> with initial conditions given by $y(x, 0)=\sin x,-\infty<x<\infty$ <br> $y(x, t)$ at $x=\pi$ and $t=\frac{\pi}{6}$ is $\ldots$ |  |
| (A) | 1 |
| (B) | 2 |
| (C) | 0 |
| (D) | 0.5 |

Graduate Aptitude Test in Engineering 2021 Organising Institute - IIT Bombay

Biomedical Engineering (BM)

| Q.29 | In the circuit shown below, $V_{s}=100 \mathrm{~V}, R_{1}=30 \Omega, R_{2}=60 \Omega, R_{3}=$ <br> $90 \Omega, \quad R_{4}=45 \Omega$, and $R_{5}=30 \Omega$. The current flowing through <br> resistor $R_{3}$ is__A. (rounded off to two decimal places) |
| :--- | :--- |
| (A) | +0.30 |
| (B) | +0.21 |
| (C) | -0.21 |
| (D) | -0.30 |


| Q. 30 | $x[n]$ is convolved with $h[n]$ to give $y[n]$. If $y[2]=1$ and $y[3]=0$, $h[0]=$ $\qquad$ . (Graphs are not uniformly scaled) |
| :---: | :---: |
| (A) | 1.85 |
| (B) | $-2.50$ |
| (C) | -1.90 |
| (D) | 2.38 |

Graduate Aptitude Test in Engineering 2021 Organising Institute - IIT Bombay

Biomedical Engineering (BM)

| Q. 31 | In the block diagram shown below, an infinite tap FIR filter with transfer <br> function $H(z)=Y(z) / X(z)$ is realized. If |
| :--- | :--- |
| the value of $\alpha$ is |  |
| (A) | 2 |
| (B) | $1 / \sqrt{2}$ |
| (C) | $1 / 2$ |
| (D) | $\sqrt{2}$ |


| Q. 32 | An analog signal is sampled at 100 MHz to generate 1024 samples. Only these samples are used to evaluate $\mathbf{1 0 2 4}$-point FFT. The separation between adjacent frequency points ( $\Delta F$ ) in FFT is $\qquad$ kHz. |
| :---: | :---: |
| (A) | 102.16 |
| (B) | 97.66 |
| (C) | 100.00 |
| (D) | 95.63 |

Graduate Aptitude Test in Engineering 2021 Organising Institute - IIT Bombay

Biomedical Engineering (BM)

| Q. 33 | In the circuit diagram shown below, all OPAMPs are ideal with infinite gain and bandwidth. $V_{\text {OUT }} / V_{I N}$ for this circuit is $\qquad$ |
| :---: | :---: |
| (A) | 5.00 |
| (B) | 5.33 |
| (C) | 4.80 |
| (D) | 6.00 |

Graduate Aptitude Test in Engineering 2021 Organising Institute - IIT Bombay

Biomedical Engineering (BM)

| Q. 34 | In the circuit diagram shown below, NMOS is in saturation region, $\mu_{\mathrm{n}} \mathrm{C}_{\mathrm{ox}}=200 \mu \mathrm{~A} / \mathrm{V}^{2}$, width $\mathrm{W}=40 \mu \mathrm{~m}$, length $\mathrm{L}=1 \mu \mathrm{~m}$, the threshold voltage is 0.4 V , and the ratio of body-effect transconductance ( $\mathrm{g}_{\mathrm{mb}}$ ) to transconductance $\left(g_{m}\right)$ is 0.1 . A small input voltage $v_{i n}$ is applied at the bulk-terminal to produce a small change in the output voltage $v_{\text {out. }}$. The dc gain for $v_{\text {out }} v_{\text {in }}$ is $\qquad$ . (Neglect channel-length modulation for NMOS and all intrinsic capacitors) |
| :---: | :---: |
| (A) | -0.4 |
| (B) | -4.0 |
| (C) | -4.4 |
| (D) | -3.6 |

Graduate Aptitude Test in Engineering 2021

| Q. 35 | As shown in the cir ideal resistors. <br> The voltage drop a voltmeters V1 and values are recorde | elow, a <br> a resisto five diff <br> V1 and |  | ge sou <br> 2 <br> using tances | conn <br> differe <br> the fol | to two |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Time instances | 1 | 2 | 3 | 4 | 5 |
|  | Readings on V1 (V) | 2.479 | 2.483 | 2.495 | 2.508 | 2.511 |
|  | Readings on V 2 (V) | 2.465 | 2.468 | 2.470 | 2.472 | 2.475 |
|  | Which of the following is TRUE? |  |  |  |  |  |
| (A) | V 1 is less accurate, V 2 is more precise |  |  |  |  |  |
| (B) | V 1 is more accurate, V2 is more precise |  |  |  |  |  |
| (C) | V 1 is less accurate, V2 is less precise |  |  |  |  |  |
| (D) | V 1 is more accurate, V 2 is less precise |  |  |  |  |  |

Graduate Aptitude Test in Engineering 2021 Organising Institute - IIT Bombay

Biomedical Engineering (BM)

| Q. 36 | The closed-loop characteristic equation of a system is given by <br> $s^{4}+2 s^{3}+8 s^{2}+\mathbf{8 s}+\mathbf{1 6}=\mathbf{0}$ <br> The frequency of oscillations of this closed-loop system at steady state is <br> rad/s. |
| :--- | :--- |
| (A) | 1 |
| (B) | 2 |
| (C) | 4 |
| (D) | 8 |


| Q. 37 | Match the following in the context of biomaterial characterization: |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | Surface characterization technique |  |  | Surface property |
|  | P | Scanning electron microscopy | K | Elemental composition |
|  | Q | Fourier-transform Infrared spectroscopy | L | Roughness |
|  | R | X-ray photoelectron spectroscopy | M | Functional groups |
|  | S | Atomic force microscopy | N | Topography |
| (A) | P-L, Q-N, R-K, S-M |  |  |  |
| (B) | P-N, Q-M, R-K, S-L |  |  |  |
| (C) | P-N, Q-K, R-L, S-M |  |  |  |
| (D) | P-M, Q-K, R-N, S-L |  |  |  |

Graduate Aptitude Test in Engineering 2021 Organising Institute - IIT Bombay

Biomedical Engineering (BM)

| Q.38 | In comparison to ECG amplifiers, the surface-EMG amplifiers have |
| :---: | :--- |
| (A) | A comparable gain and smaller bandwidth |
| (B) | A comparable gain and larger bandwidth |
| (C) | At least 20 dB higher gain and a larger bandwidth |
| (D) | At least 20 dB lower gain and a smaller bandwidth |


| Q. 39 | Match the following organs with their functions: |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  | Organ |  | Function |
|  | $\mathbf{P}$ | Stomach | K | Secretion of insulin and glucagon |
|  | Q | Liver | L | Storage of bile |
|  | R | Pancreas | M | Synthesis and secretion of bile |
|  | S | Gallbladder | N | Secretion of gastrin |
| (A) | P-M, Q-N, R-K, S-L |  |  |  |
| (B) | P-N, Q-M, R-K, S-L |  |  |  |
| (C) | P-N, Q-K, R-L, S-M |  |  |  |
| (D) | P-L, Q-M, R-K, S-N |  |  |  |


| Q.40 | An RF pulse is applied to acquire an axial MR image at the isocenter of a <br> $\mathbf{1 . 5 T}$ MRI scanner with slice thickness of 2.5 mm . Assuming a gradient <br> field strength of 2 Gauss/cm is applied and Gyromagnetic ratio of protons <br> is 42.58 MHz/T, the RF pulse bandwidth required for slice selection is <br> $\mathbf{~ k H z}$ |
| :---: | :--- |
| (A) | 1.06 |
| (B) | 2.13 |
| (C) | 6.66 |
| (D) | 13.31 |

Graduate Aptitude Test in Engineering 2021

| Q. 41 | A longitudinal pressure wave travelling inside a muscle tissue is incident at an angle of $60^{\circ}$ at the interface between the muscle and kidney. Let the wave impedance be $Z_{\text {muscle }}=1.70 \times 10^{5} \mathrm{~g} \mathrm{~cm}^{-2} \mathrm{~s}^{\mathbf{- 1}}, \mathrm{Z}_{\text {kidney }}=1.62 \times 10^{5}$ $g \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$ and wave velocities in muscle and kidney tissues be 1590 and $1560 \mathrm{~m} / \mathrm{s}$ respectively. The transducer centre frequency is 1.5 MHz . The pressure wave propagation angle in the kidney tissue and intensity transmission coefficient at the tissue interface are $\qquad$ degrees (rounded off to the nearest integer) and $\qquad$ (rounded off to two decimal places), respectively. |
| :---: | :---: |
| (A) | 58, 0.24 |
| (B) | 30, 0.68 |
| (C) | 58, 0.94 |
| (D) | 30, 0.99 |


| Q.42 | A novel biomaterial was tested for its tensile properties. The experiment <br> was conducted using a cylindrical sample of this material, which was 10 $\mathbf{~ m}$ <br> long with 1 cm diameter. When a tensile force of 50 kN was applied, this <br> cylindrical sample elongated by 4 mm. Based on the experimental results <br> described above and the tensile moduli of different tissues given in the table <br> below, this biomaterial would be a suitable replacement for |  |
| :--- | :--- | :--- |
|  | Tissue | Tensile modulus |
|  | Bone | Tendon |
|  | Ligament | $\mathbf{5 - 2 0} \mathbf{~ G P a}$ |
| Articular cartilage | $\mathbf{0 . 5 - 1 \mathbf { G P a }}$ |  |
| (A) | Bone | $\mathbf{2 0 - 4 0 0} \mathbf{~ M P a}$ |
| (B) | Tendon | $\mathbf{3 - 1 0 ~ M P a}$ |
| (C) | Ligament |  |
| (D) | Articular cartilage |  |

Graduate Aptitude Test in Engineering 2021 Organising Institute - IIT Bombay

Biomedical Engineering (BM)
Q. 43 - Q. 45 Multiple Select Question (MSQ), carry TWO mark each (no negative marks).

| Q.43 | In the circuit shown below, $R_{1}=2 \Omega, R_{2}=1 \Omega, L_{1}=2 \mathrm{H}$, and $L_{2}=\mathbf{0 . 5} \mathbf{H}$. <br> Which of the following describe(s) the characteristics of the circuit? |
| :--- | :--- |
| (A) | Second order high pass filter |
| (B) | Second order low pass filter |
| (C) | Underdamped system |
| (D) | Overdamped system |

Graduate Aptitude Test in Engineering 2021

| Q. 44 | An inexperienced clinician was measuring the cardiac output of a healthy human by thermodilution technique. A $\mathbf{2 . 0} \mathbf{~ m L}$ of cold saline solution of volume $\left(V_{i}\right)$ at $7{ }^{\circ} \mathrm{C}$ was injected at the entrance of the right atrium. The change in blood temperature $\left(\int_{0}^{t 1} \Delta T_{b} d t\right)$ at the pulmonary artery was measured to be - $\mathbf{2 0}$ Kelvin. second. The cardiac output $F$ was calculated using the following formula $F=\frac{Q}{\rho_{b} c_{b} \int_{0}^{t 1} \Delta T_{b} d t}$ <br> where $Q$ is the heat content of injectate in Joules, given by $V_{i} \Delta T_{i} \rho_{i} c_{i}$ and $\Delta T_{i}$ is the temperature difference between the injectate and blood. It was assumed that the density of blood ( $\rho_{b}$ in $\mathrm{kg} / \mathrm{m}^{3}$ ) and the specific heat capacity of blood ( $c_{b}$ in $\mathrm{J} /(\mathrm{kg}$. K) ) were respectively equal to that of the injectate $\rho_{i}$ and $c_{i}$. <br> The clinician realized that there was an error in the measurement of $\boldsymbol{F}$. Which of the following is TRUE? |
| :---: | :---: |
| (A) | Cardiac output is too low because the cold saline volume was too small |
| (B) | Cardiac output is too low because $\int_{0}^{t 1} \Delta T_{b} d t$ is too large |
| (C) | Cardiac output is too high because the cold saline volume was too large |
| (D) | Cardiac output is too high because $\int_{0}^{t 1} \Delta T_{b} d t$ is too small |


| Q.45 | Which of the following statements about smooth muscles are TRUE? |
| :---: | :--- |
| (A) | Smooth muscles are found in the walls of hollow organs |
| (B) | Smooth muscles are controlled by the autonomic nervous system |
| (C) | Smooth muscles are made up of non-striated cells |
| (D) | Smooth muscles are made up of striated cells |

Graduate Aptitude Test in Engineering 2021

Biomedical Engineering (BM)
Q. 46 - Q. 55 Numerical Answer Type (NAT), carry TWO mark each (no negative marks).
Q. 46 Consider a unity feedback system with closed loop transfer function

$$
\frac{C(s)}{R(s)}=\frac{s+90}{s^{2}+10 s+90}
$$

The steady state error with respect to a unit ramp input is $\qquad$ . (rounded off to one decimal place)
Q. 47 The diameter of a renal artery lumen in humans is $5 \mathbf{m m}$. If the mean velocity of the blood flowing in the renal artery is $40 \mathrm{~cm} / \mathrm{s}$, the density of blood $(\rho)$ is $1060 \mathrm{~kg} / \mathrm{m}^{3}$, and the viscosity of blood ( $\mu$ ) is $\mathbf{3} \mathbf{~ c P}$, the Reynolds number for the blood flowing in the renal artery is $\qquad$ (rounded off to the nearest integer).
Q. 48 A drug manufacturer believes that there is a 95\% chance that the drug controller will approve a new drug the company plans to distribute if the results of the current testing show that the drug causes no side effects. The manufacturer further believes that there is a 0.50 probability that the drug will be approved even if the test shows side effects. A physician working for the drug manufacturer believes there is a 0.20 probability that tests will show side effects. If the drug is approved by the drug controller, the probability that the drug causes side effects is $\qquad$ . (rounded off to three decimal places)
Q. 49 In a measurement process, groups $A$ and $B$ recorded 10 and 15 values, respectively. The arithmetic means and standard deviations of group $A$ are $\mu_{\mathrm{A}}=35, \sigma_{\mathrm{A}}=0.4$ and group $B$ are $\mu_{\mathrm{B}}=38, \sigma_{\mathrm{B}}=0.6$, respectively. The standard deviation for the combined set of group $A$ and group $B$ measurements is $\qquad$ . (rounded off to two decimal places)

Graduate Aptitude Test in Engineering 2021
Q. 50 In the circuit given below, $V_{s}=50 \mathrm{~V}$. Let the circuit reach steady state for the SPDT switch at position 1 . Once the circuit is switched to position 2, the energy dissipated in the resistors is $\qquad$ J. (rounded off to one decimal place)

Q. 51

In the circuit shown below, the output voltage Vout is $\qquad$ V.


A pacemaker was implanted in a cardiac patient. It has a battery of 2.4 A.h (Ampere.hour). It is designed to deliver a rectangular pulse of amplitude 1.5 V for 1 ms ON time for every one second. The electrode - heart resistance is $150 \Omega$. Assuming the current drained from the battery is negligible, the lifetime of the pacemaker is $\qquad$ years. (rounded off to the nearest integer)

Graduate Aptitude Test in Engineering 2021

Biomedical Engineering (BM)
Q. 53 A radiographic system is using X-ray tube operating at 80 kVp . In order to filter the low energy X-rays, an aluminum (Al) filter of $\mathbf{2 . 5} \mathbf{~ m m}$ thickness is used. The Al filter is replaced with a copper ( Cu ) filter to have the same energy filtered. The mass attenuation coefficients of Al and Cu at 80 kVp are $0.02015 \mathrm{~m}^{2} / \mathrm{kg}$ and $0.07519 \mathrm{~m}^{2} / \mathrm{kg}$, respectively. The densities of Al and Cu are $2699 \mathrm{~kg} / \mathrm{m}^{3}$ and $8960 \mathrm{~kg} / \mathrm{m}^{3}$ respectively. The thickness of the new $\mathbf{C u}$ filter is $\qquad$ mm . (rounded off to two decimal places)
Q. 54 In a radioactive isotope, $\mathbf{N}$ nuclei are needed to produce radioactivity level of $2 \mathbf{~ m C i}$. Assuming decay constant of $3.22 \times 10^{-5} \mathrm{~s}^{-1}$ and atomic weight of $98 \mathrm{~g} / \mathrm{mol}$ and Avogadro's number $=6.02 \times 10^{23} \mathrm{~mol}^{-1}$, the mass of N radionuclide is $\qquad$ picograms. (rounded off to the nearest integer)
Q. 55 A PZT crystal of thickness 1 mm and wave velocity $4000 \mathrm{~m} / \mathrm{s}$ is emitting a longitudinal pressure wave, which is incident on a blood vessel at an angle of $30^{\circ}$. The doppler shift in the ultrasound wave for a blood flow of $10 \mathrm{~cm} / \mathrm{s}$ and wave velocity in the soft tissue of $1540 \mathrm{~m} / \mathrm{s}$ is $\qquad$ Hz.

END OF THE QUESTION PAPER

