Q. 1 - Q. 5 Carry ONE mark each.

Q. 1	Inhaling the smoke from a burning________ you quickly.
(A)	tire / tier
(B)	tire / tyre
(C)	tyre / tire
(D)	tyre / tier

Q.2	A sphere of radius $r \mathrm{~cm}$ is packed in a box of cubical shape. What should be the minimum volume (in cm^{3}) of the box that can enclose the sphere?			
(A)	$\frac{r^{3}}{8}$	\quad	(B)	r^{3}
---:	:---			
(C)	$2 r^{3}$			
(D)	$8 r^{3}$			

Q.3	Pipes P and Q can fill a storage tank in full with water in 10 and 6 minutes, respectively. Pipe R draws the water out from the storage tank at a rate of 34 litres per minute. P, Q and R operate at a constant rate. If it takes one hour to completely empty a full storage tank with all the pipes operating simultaneously, what is the capacity of the storage tank (in litres)?
(A)	26.8
(B)	60.0
(C)	120.0
(D)	127.5

Q. 4	Six persons $\mathrm{P}, \mathrm{Q}, \mathrm{R}, \mathrm{S}, \mathrm{T}$ and U are sitting around a circular table facing the center not necessarily in the same order. Consider the following statements: - P sits next to S and T. - Q sits diametrically opposite to P . - The shortest distance between S and R is equal to the shortest distance between T and U . Based on the above statements, Q is a neighbor of
(A)	U and S
(B)	R and T
(C)	R and U
(D)	P and S

Q. 5	A building has several rooms and doors as shown in the top view of the building given below. The doors are closed initially. What is the minimum number of doors that need to be opened in order to go from the point P to the point Q? (A) (B) (C) (D)

Q. 6 - Q. 10 Carry TWO marks each.

Q.6	Rice, a versatile and inexpensive source of carbohydrate, is a critical component of diet worldwide. Climate change, causing extreme weather, poses a threat to sustained availability of rice. Scientists are working on developing Green Super Rice (GSR), which is resilient under extreme weather conditions yet gives higher yields sustainably. Which one of the following is the CORRECT logical inference based on the information given in the above passage?
(A)	GSR is an alternative to regular rice, but it grows only in an extreme weather
(B)	GSR may be used in future in response to adverse effects of climate change
(C)	GSR grows in an extreme weather, but the quantity of produce is lesser than regular rice
(D)	Regular rice will continue to provide good yields even in extreme weather

Q. 7	A game consists of spinning an arrow around a stationary disk as shown below. When the arrow comes to rest, there are eight equally likely outcomes. It could come to rest in any one of the sectors numbered $1,2,3,4,5,6,7$ or 8 as shown. Two such disks are used in a game where their arrows are independently spun. What is the probability that the sum of the numbers on the resulting sectors upon spinning the two disks is equal to 8 after the arrows come to rest?
(B)	

Q. 8	Consider the following inequalities. (i) $\quad 3 p-q<4$ (ii) $\quad 3 q-p<12$ Which one of the following expressions below satisfies the above two inequalities?
(A)	$p+q<8$
(B)	$p+q=8$
(C)	$8 \leq p+q<16$
(D)	$p+q \geq 16$

Q.9	Given below are three statements and four conclusions drawn based on the statements. Statement 1: Some engineers are writers. Statement 2: No writer is an actor. Statement 3: All actors are engineers.
	Conclusion I: Some writers are engineers. Conclusion III: No actor is a writer. Conclusion IV: Some actors are writers. Which one of the following options can be logically inferred?
(A)	Only conclusion I is correct
(B)	Only conclusion II and conclusion III are correct
(D)	Onlor conclusion III or conclusion IV is correct

GATE	Graduate Aptitude Test in Engineering Organised by Indian Institute of Technology Kharagpur
Q. 10	Which one of the following sets of pieces can be assembled to form a square with a single round hole near the center? Pieces cannot overlap.
(A)	
(B)	
(C)	
(D)	

GATE 2022 Agricultural Engineering (AG)

Q. 11 - Q. 35 Carry ONE mark Each

Q.11	Determinant of a matrix remains unaltered if
(A)	its columns and rows are interchanged
(B)	two parallel lines are identical
(C)	two parallel lines intersect
(D)	each element of a line is multiplied by the same factor
Q.12	The probability of having 53 Sundays in a randomly selected leap year is
(A)	$1 / 7$
(B)	$1 / 4$
(C)	$2 / 7$
(D)	$4 / 7$

GATE 2022 Agricultural Engineering (AG)

Q.13	Function $f(x)$ by Maclaurin's series (as an infinite series) can be expressed as
(A)	$f(x)=f(1)+x f^{\prime}(1)+\frac{x^{2}}{2!} f^{\prime \prime}(1)+\frac{x^{3}}{3!} f^{\prime \prime \prime}(1)+\cdots+\infty$
(B)	$f(x)=f(0)+x f^{\prime}(0)+\frac{x^{2}}{2!} f^{\prime \prime}(0)+\frac{x^{3}}{3!} f^{\prime \prime \prime}(0)+\cdots+\infty$
(C)	$f(x)=f(1)-x f^{\prime}(1)+\frac{x^{2}}{2!} f^{\prime \prime}(1)-\frac{x^{3}}{3!} f^{\prime \prime \prime}(1)+\cdots+\infty$
(D)	$f(x)=f(0)-x f^{\prime}(0)+\frac{x^{2}}{2!} f^{\prime \prime}(0)-\frac{x^{3}}{3!} f^{\prime \prime \prime}(0)+\cdots+\infty$
Q.14	The lowest temperature at which the fuel ceases to flow is known as
(A)	Pour point
(B)	Cloud point
(C)	Flash point
(D)	Boiling point

GATE 2022 Agricultural Engineering (AG)

Q.15	Complement of the Solar Altitude angle is
(A)	Zenith angle
(B)	Azimuth angle
(C)	Hour angle
(D)	Profile angle
Q.16	Annual cost of owning (fixed cost) a particular combine harvester is Rs. 3,00,000 whereas, operating it would cost additional Rs. 6,000 per hectare. If an entrepreneur wishes to offer the machine for custom hiring, the combination of annual use (ha) and custom rate (Rs. ha cond), respectively, that would fetch him the break-even condition is (A) 200 and 7,500
(B)	210 and 6,300
(C)	180 and 9,200
(D)	250 and 6,100

GATE 2022 Agricultural Engineering (AG)

Q. 17	In construction of gravel packed wells, the pack-aquifer ratio is generally defined as (A)
(B)	$\frac{50 \% \text { of the size of gravel pack }}{50 \% \text { of the size of aquifer }}$
(C)	$\frac{50 \% \text { of the size of gravel pack }}{50 \% \text { of the size of gravel pack }}$
(D)	$\frac{60 \% \text { of the size of aquifer }}{10 \% \text { of the size of gravel pack }}$
Q.18	The shape of falling limb of a hydrograph is dependent on
(A)	basin and storm characteristics
(B)	storm characteristics only
(C)	basin characteristics only
(D)	direction of the rainfall only

GATE 2022 Agricultural Engineering (AG)

Q. 19	Energy requirement (E) to produce a change $(d X)$ in dimension X of a particular size can be expressed as $\frac{d E}{d X}=-\frac{C}{X^{n}}$, where, c is constant and n according to Rittinger's law is
(A)	$\frac{1}{2}$
(B)	$\sqrt{2}$
(C)	$\frac{3}{2}$
(D)	2
Q. 20	The ratio of inertial forces to viscous forces is knows as
(A)	Froude number
(B)	Reynolds number
(C)	Power number
(D)	Biot number
Q. 21	The root of the equation $\sin x-4 x+1=0$ after its first iteration, using Newton-Raphson method with an initial guess of $x_{0}=0.2$, is \qquad [round off to three decimal places]
Q. 22	The slope of the function $f(x)=2 x^{4}-3 x^{2}+5 x$ at $x=2$ is \qquad [Answer in integer]

GATE 2022 Agricultural Engineering (AG)

GATE 2022 Agricultural Engineering (AG)

Q. 28	A stream of $200 \mathrm{~L} \mathrm{~s}^{-1}$ is diverted from a canal to irrigate a wheat field in 8 hours. If the runoff from the field is $500 \mathrm{~m}^{3}$ and the conveyance efficiency is 75%, the application efficiency in per cent is \qquad [round off to two decimal places]
Q. 29	The flow rate per unit width of a wide rectangular clean-earth channel is $20 \mathrm{~m}^{3} \mathrm{~s}^{-1} \mathrm{~m}^{-1}$. The calculated critical flow depth in meter will be \qquad [round off to two decimal places] (Take $g=9.81 \mathrm{~m} \mathrm{~s}^{-2}$)
Q. 30	The ratio of soil loss from the field plot length to that from the unit plot with a slope length of 22.13 m is 0.5 . If the slope length from the watershed divide is 600 m and the slope gradient is 8%, the topographic factor in the Universal Soil Loss Equation is \qquad . [round off to two decimal places]
Q. 31	The area of a rectangular field was measured using a 30 m survey chain, which was later found to be 5 cm short. If the length and width of the field measured using this chain were 542 m and 554 m , respectively, the true area of the field in ha is \qquad . [round off to two decimal places]
Q. 32	In a triple effect feed forward evaporator, pineapple juice is entering at the rate of $6.3 \mathrm{~kg} \mathrm{~s}^{-1}$ and leaving the last effect as 50% concentrate. The system is using saturated steam of $2.48 \mathrm{~kg} \mathrm{~s}^{-1}$ at $121.1^{\circ} \mathrm{C}$. If vapour transferred from the first to the second effect, second to third effect and third to ambient are 5675,6053 and $6416 \mathrm{~kg} \mathrm{~h}^{-1}$, respectively, the steam economy of the evaporator is \qquad [round off to two decimal places]

GATE 2022 Agricultural Engineering (AG)

GATE 2022 Agricultural Engineering (AG)
Q. 36 - Q. 65 Carry TWO marks Each

Q. 36	The function $(x-2)^{2}(x+2)^{2}$ has
(A)	minima at +2 and maxima at -2
(B)	minima at -2 and maxima at +2
(C)	minima at -2 and +2
(D)	maxima at -2 and +2
Q. 37	The matrix $\left[\begin{array}{ccc}(3-x) & 2 & 2 \\ 2 & (4-x) & 1 \\ -2 & -4 & (-1-x)\end{array}\right]$ is singular for the following values
(A)	$x=0$ and $x=3$
(B)	$x=0$ and $x=-3$
(C)	$x=0$ and $x=6$
(D)	$x=0$ and $x=-6$

GATE 2022 Agricultural Engineering (AG)

Q.38	A $5 \times 20 \mathrm{~cm}$ seed drill has a ground drive wheel of rolling diameter 0.5 m. While testing under laboratory condition, 320 g of seeds were collected in 20 revolutions of the ground drive wheel. The same seed drill when operated in a 2 ha field, amount of seeds dropped was found to be 185 kg. The variation in the seed dropped between laboratory and field conditions due to skid of ground drive wheel is (Take $\pi=3.14)$
(A)	6.38%
(B)	9.23%
(C)	10.17%
(D)	12.26%
Q.39	A 3.6 m combine harvester was tested over a crop strip of 20 m length and the following data were obtained while testing: Total material left over walker $=8.5 \mathrm{~kg}$ Free seed over walker $=100 \mathrm{~g}$ Unthreshed seed over walker $=50 \mathrm{~g}$ Total material left over shoe $=5.5 \mathrm{~kg}$ Free seed over shoe $=250 \mathrm{~g}$ Unthreshed seed over shoe $=80 \mathrm{~g}$ Total seed collected in the grain tank $=16.5 \mathrm{~kg}$ The grain yield (tonne ha ${ }^{-1}$) and cylinder loss (\%), respectively, are
(D)	8.05 and 2.82 (A)2.36 and 0.77 4.24 and 0.29

GATE 2022 Agricultural Engineering (AG)

Q.40	An ideal gas is compressed adiabatically (Adiabatic exponent $\gamma=1.4$) from 98 kPa to 480 kPa and the specific volume of the gas at the beginning of the compression stroke is $0.45 \mathrm{~m}^{3} \mathrm{~kg}^{-1}$. The specific work done on the gas in $\mathrm{kJ} \mathrm{kg}^{-1}$ is
(A)	12.6
(B)	18.5
(C)	25.4
(D)	63.3
Q.41	A sample of 90% saturated clay soil has void ratio and specific gravity of 0.8 and 2.7, respectively. The bulk unit weight of soil in N m (Take unit weight of water $=9.81 \times 10^{3} \mathrm{~N} \mathrm{~m}^{-3}$)
(Dake	
(A)	10594.80
(B)	18639.00
18.60	

GATE 2022 Agricultural Engineering (AG)

Q.42	A parabolic shaped grass-waterway is to be designed to carry a flow of $2.85 \mathrm{~m}^{3} \mathrm{~s}^{-1}$ down the slope of 3%. The permissible velocity of water in the waterway is $1.78 \mathrm{~m} \mathrm{~s}^{-1}$. If the freeboard depth is excluded, the most appropriate top width in m and depth in m, respectively are (Take Manning's roughness coefficient $=0.04$)
(A)	4 and 0.6
(B)	6 and 0.4
(C)	7 and 0.5
(D)	5.5 and 0.6
Q.43	The pressure drop through a well-designed constriction is to be used for measuring the velocity of flow through a circular pipe. If the pressure drop from a 0.1 m diameter section to a 0.05 m diameter section of the pipe is 7.5 kPa , the velocity in m s
(Take density of liquid 0.1 m diameter section of the pipe is $1000 \mathrm{~kg} \mathrm{~m} \mathrm{~m}^{-3}$)	
(C)	1.5
(D)	2.0
	1.0
(B)	

GATE 2022 Agricultural Engineering (AG)

Q. 44	The water activity of potato is 0.942 . As per Raoult's law, the most efficient solution for osmotic dehydration of potato is \qquad (Molar mass of sucrose $=342 \mathrm{~g}$ mole $^{-1}$, and $\mathrm{NaCl}=58.5 \mathrm{~g}$ mole $^{-1}$)
(A)	20\% sucrose solution
(B)	$20 \% \mathrm{NaCl}$ solution
(C)	10% sucrose solution $+10 \% \mathrm{NaCl}$ solution
(D)	15% sucrose solution $+5 \% \mathrm{NaCl}$ solution
Q. 45	The mass fraction retained on the $\mathrm{i}^{\text {th }}$ sieve is x_{i} and $\overline{D_{p l}}$ is the average opening size of $\mathrm{i}^{\text {th }}$ and $(\mathrm{i}-1)^{\text {th }}$ sieves. The volume surface mean diameter $\left(\overline{D_{s}}\right)$ of particles retained on n number of sieves is
(A)	$\overline{D_{s}}=\frac{1}{\sum_{i=1}^{n}\left(\frac{x_{i}}{\overline{D_{p l}}}\right)}$
(B)	$\overline{D_{s}}=\sum_{i=1}^{n} x_{i} \overline{D_{p l}}$
(C)	$\overline{D_{s}}=\left[\frac{1}{\sum_{i=1}^{n}\left(\frac{x_{i}}{{\overline{D_{p l}}}^{3}}\right)}\right]^{1 / 3}$
(D)	$\overline{D_{s}}=\left[\frac{1}{\sum_{i=1}^{n}\left(\frac{x_{i}}{{\overline{D_{p l}}}^{3}}\right)}\right]^{2 / 3}$

GATE 2022 Agricultural Engineering (AG)

Q. 46	Match the following reactants in Column I with the most appropriate purpose used in processing as mentioned in Column II							
		Column I		Column II				
	I	Vitamin E	P	fumigant for insect killing				
	II	Calcium salts	Q	reduces shrinkage losses				
	III	Edible waxes	R	antioxidant with vitamin A in oils				
	IV	Methyl Bromide	S	firming agent in fruits				
(A)	I-P, II-S, III-Q, IV-R							
(B)	I-R, II-Q, III-S, IV-P							
(C)	I-P, II-Q, III-S, IV-R							
(D)	I-R, II-S, III-Q, IV-P							
Q. 47	Work done by a moving particle in the force field $\overline{\boldsymbol{F}}=6 x^{2} \hat{\boldsymbol{\imath}}+(3 x z+y) \hat{\boldsymbol{j}}+4 z \widehat{\boldsymbol{k}}$, moving along the straight line from $(0,0,0)$ to $(1,2,3)$ is \qquad [Answer in integer]							
Q. 48	The power consumption readings (in watt) by an instrument at fixed intervals of time (in seconds) are tabulated below:							
		Time (s)	0.6	1.2	1.8	2.4	3.0	3.6
	Pow	consumption (W)	9.2	7.8	6.4	7.2	8.6	11.2
	Using Simpson's $1 / 3^{\text {rd }}$ rule, the energy expenditure of the instrument in joule is\qquad . [round off to two decimal places]							

GATE 2022 Agricultural Engineering (AG)

Q. 49	The root mean square acceleration for mechanical vibration of a tractor is $3.15 \mathrm{~m} \mathrm{~s}^{-2}$ and its frequency is 80 Hz . The root mean square amplitude of the vibration in $\mu \mathrm{m}$ is \qquad [round off to two decimal places] (Take $\pi=3.14$)
Q. 50	The static weight on front and rear axles of a two-wheel drive tractor are 3 kN and 9 kN , respectively. The wheel-base of the tractor is 2.1 m and the tractor pulls a load of 7.5 kN . The perpendicular distance from the front wheel ground contact point to the line of pull is 680 mm . Neglecting the wheel contact off-set on the ground, the weight transfer onto the rear axle in kN is \qquad . [round off to two decimal places]
Q. 51	The crank radius and connecting rod length of an IC engine are 250 mm and 1000 mm , respectively. If the crank turns 100° from the head dead centre and the net force acting on the piston along its direction of motion is 35 kN , the turning moment of the crank shaft at that instant in kN m is \qquad [round off to two decimal places]
Q. 52	An engine develops 42 kW brake power when it runs with B20 fuel (80% biodiesel and 20% diesel by volume) with a brake thermal efficiency of 24%. The heating value of the fuel is 46.15 MJ kg -1 and its density is $0.845 \mathrm{~kg} \mathrm{~L}^{-1}$. The fuel consumption of the engine in Lh^{-1} will be \qquad . [round off to two decimal places]
Q. 53	A tractor operated $12 \times 60 \mathrm{~cm}$ boom sprayer had an overlap of 30 cm between the successive passes during field operation at an average speed of $4.2 \mathrm{~km} \mathrm{~h}^{-1}$. A total time loss of $7.5 \mathrm{~min} \mathrm{ha}^{-1}$ was observed during turnings. Assuming no overlap of spray material between adjacent nozzles, the field efficiency of the sprayer in per cent is \qquad . [round off to two decimal places]

GATE 2022 Agricultural Engineering (AG)

GATE 2022 Agricultural Engineering (AG)

GATE 2022 Agricultural Engineering (AG)

Q. No.	Session	Question Type	Subject Name	Key/Range	Mark (MK)
1	4	MCQ	GA	C	1
2	4	MCQ	GA	D	1
3	4	MCQ	GA	C	1
4	4	MCQ	GA	C	1
5	4	MCQ	GA	C	1
6	4	MCQ	GA	B	2
7	4	MCQ	GA	D	2
8	4	MCQ	GA	A	2
9	4	MCQ	GA	C	2
10	4	MCQ	GA	C	2
11	4	MCQ	AG	A	1
12	4	MCQ	AG	C	1
13	4	MCQ	AG	B	1
14	4	MCQ	AG	A	1
15	4	MCQ	AG	A	1
16	4	MCQ	AG	A	1
17	4	MCQ	AG	A	1
18	4	MCQ	AG	C	1
19	4	MCQ	AG	D	1
20	4	MCQ	AG	B	1
21	4	NAT	AG	0.250 to 0.350	1
22	4	NAT	AG	57 to 57	1
23	4	NAT	AG	0.157 to 0.159	1
24	4	NAT	AG	50.95 to 50.97	1
25	4	NAT	AG	0.14 to 0.18	1
26	4	NAT	AG	156.00 to 158.00	1
27	4	NAT	AG	1.48 to 1.53	1
28	4	NAT	AG	88.40 to 88.50	1
29	4	NAT	AG	3.42 to 3.46	1
30	4	NAT	AG	4.35 to 4.45	1
31	4	NAT	AG	29.90 to 29.95	1
32	4	NAT	AG	2.00 to 2.04	1
33	4	NAT	AG	256.5 to 257.5	1
34	4	NAT	AG	3678.00 to 3698.00	1
35	4	NAT	AG	10.20 to 10.40	1
36	4	MCQ	AG	C	2
37	4	MCQ	AG	A	2
38	4	MCQ	AG	B	2
39	4	MCQ	AG	A	2
40	4	MCQ	AG	D	2
41	4	MCQ	AG	B	2
42	4	MCQ	AG	B	2
43	4	MCQ	AG	B	2
44	4	MCQ	AG	B	2

45	4	MCQ	AG	A	2
46	4	MCQ	AG	D	2
47	4	NAT	AG	28 to 28	2
48	4	NAT	AG	29.20 to 29.50	2
49	4	NAT	AG	12.20 to 12.80	2
50	4	NAT	AG	2.30 to 2.60	2
51	4	NAT	AG	8.00 to 8.50	2
52	4	NAT	AG	14.00 to 18.00	2
53	4	NAT	AG	69.00 to 71.00	2
54	4	NAT	AG	10.20 to 10.50	2
55	4	NAT	AG	13.75 to 13.85	2
56	4	NAT	AG	111.80 to 112.00	2
57	4	NAT	AG	0.78 to 0.81	2
58	4	NAT	AG	33.60 to 33.70	2
59	4	NAT	AG	18.90 to 19.10	2
60	4	NAT	AG	0.165 to 0.172	2
61	4	NAT	AG	23.80 to 24.50	2
62	4	NAT	AG	9.20 to 9.30	2
63	4	NAT	AG	7.40 to 7.55	2
64	4	NAT	AG	29.0 to 30.0	2
65	4	NAT	AG	0.028 to 0.032	2

